Glasnik Matematicki, Vol. 47, No. 2 (2012), 333-349.
SHAPELESS QUASIGROUPS DERIVED BY FEISTEL ORTHOMORPHISMS
Aleksandra Mileva and Smile Markovski
Faculty of Computer Science, University "Goce Delčev", 2000 Štip, Republic of Macedonia
e-mail: aleksandra.mileva@ugd.edu.mk
Faculty of Computer Science and Engineering, University "Ss Cyril and Methodius", 1000 Skopje, Republic of Macedonia
e-mail: smile.markovski@finki.ukim.mk
Abstract. Shapeless quasigroups are needed for cryptography purposes. In this paper, we construct shapeless quasigroups by the diagonal method from
orthomorphisms over abelian groups. We use generalizations of Feistel networks as orthomorphisms. We introduce parameters into several types of Extended Feistel networks and Generalized Feistel-non linear
feedback shift registers and, by suitable choice of the parameter
values, different shapeless quasigroup can be used in every application.
2010 Mathematics Subject Classification.
20N05, 94A60.
Key words and phrases. Shapeless quasigroup, Extended Feistel network, orthomorphism, Generalized Feistel-non linear feedback shift register.
Full text (PDF) (free access)
DOI: 10.3336/gm.47.2.09
References:
-
J. Choy, G. Chew, K. Khoo, and H. Yap, Cryptographic properties and application
of a generalized unbalanced Feistel network structure, in: ACISP 2009 (ed. C. Boyd, J. González Nieto), LNCS 5594 (2009), Springer Berlin Heidelberg, 73-89.
-
T. P. Cowhig, Constructing monogenic quasigroups
with specified properties, PhD thesis, University of London, 2009.
-
J. Dénes and A. D. Keedwell, Latin squares. New developments in the theory and applications,
North-Holland Publishing Co., Amsterdam, 1991.
MathSciNet
-
A. Drápal and T. Kepka, Parity of orthogonal automorphisms, Comment. Math. Univ. Carolin. 28
(1987), 251-259.
MathSciNet
-
A. B. Evans, Orthomorphism Graphs of Groups, J. of Geom. 35
(1989), 66-74.
MathSciNet
CrossRef
-
H. Feistel, Cryptography and computer privacy, Sci. Amer. 228
(1973), 15-23.
http://www.apprendre-en-ligne.net/crypto/bibliotheque/feistel/
CrossRef
-
D. Gligoroski, S. Markovski and L. Kocarev, Edon-R, an infinite family of cryptographic hash functions, The Second NIST Cryptographic Hash Workshop, UCSB, Santa Barbara, CA, 2006.
http://www.csrc.nist.gov/pki/HashWorkshop/2006/Papers/GLIGOROSKI\_EdonR-ver06.pdf. Accessed 16 June 2009.
-
D. Gligoroski, R. S. Ødegård, R. E. Jensen, L. Perret, J.-C. Faugère, S. J.
Knapskog and S. Markovski, The digital signature scheme MQQ-SIG, Report 527, Cryptology ePrint Archive, 2010.
-
D. Gligoroski, S. Markovski and S.J. Knapskog, The stream cipher edon80, in:
New stream cipher designs: The eSTREAM finalists, Springer-Verlag, 2008, 152-169.
CrossRef
-
D. Gligoroski, R. S. Ødegård, M. Mihova, S. J. Knapskog, L. Kocarev, and A. Drápal, Cryptographic hash function EDON-R. Submission to NIST as first round candidate,
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions\_rnd1.html, 2008. Accessed 16 June 2009.
-
D. F. Hsu, and A. D. Keedwell, Generalized complete mappings,
neofields, sequenceable groups and block designs II, Pac. J. Math. 117 (1985), 291-312.
MathSciNet
CrossRef
-
V. I. Izbash, Monoquasigroups without congruences and automorphisms, Bul. Acad. Stiinte Repub. Mold. Mat. (4) (1992),
66-76.
MathSciNet
-
D. M. Johnson, A. L. Dulmage and N. S. Mendelsohn, Orthomorphisms
of groups and orthogonal latin squares, I,
Can. J. Math. 13 (1961), 356-372.
MathSciNet
CrossRef
-
A. D. Keedwell, Crossed inverse quasigroups with long inverse cycles
and applications to cryptography, Australas. J. Combin. 20 (1999), 241-250.
MathSciNet
-
T. Kepka, A note on simple quasigroups, Acta Univ. Carolin.--Math. Phys. 19 (1978), 59-60.
MathSciNet
-
H. B. Mann, The construction of orthogonal Latin
squares, Ann. Math. Statistics 13 (1942),
418-423.
MathSciNet
CrossRef
-
S. Markovski and A. Mileva, Generating huge quasigroups from small non-linear bijections via extended Feistel function, Quasigroups Related Systems 17 (2009), 91-106.
MathSciNet
-
S. Markovski and A. Mileva, NaSHA, Submission to NIST as first round candidate,
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/submissions\_rnd1.html, 2008. Accessed 16 June 2009.
-
S. Markovski, S. Samardziska, D. Gligoroski and S. J. Knapskog,
Multivariate trapdoor functions based on multivariate left
quasigroups and left polynomial quasigroups, in: Proc. of The
2nd international conference on symbolic computation and
cryptography (ed. C. Cid and J.-C. Faugère), 2010, Royal Halloway, Egham, UK, 237-251.
-
K. A. Meyer, A new message authentication code based on the non-associativity of quasigroups,
PhD thesis, Iowa State University, 2006.
MathSciNet
Phd
-
A. Mileva, Cryptographic primitives with quasigroup string transformations,
PhD thesis, University ``Ss Cyril and Methodious" - Skopje, 2010.
%nije citirano
-
L. Mittenthal, Block substitutions using orthomorphic mappings,
Adv. in Appl. Math. 16 (1995), 59-71.
MathSciNet
CrossRef
-
A. Sade, Groupoïdes automorphes par le groupe cyclique,
Can. J. Math. 9 (1957), 321-335.
MathSciNet
CrossRef
-
D. G. Sarvate and J. Seberry, Encryption methods based
on combinatorial designs, Ars Combinatoria 21A (1986), 237-246.
-
V. A. Shcherbacov, On linear quasigroups and their automorphism
groups, Mat. Issled. 120 (1991), 104-113 (in Russian).
-
I. M. Wanless, Diagonally cyclic latin squares, European J. Combin. 25 (2004), 393-413.
MathSciNet
CrossRef
-
Y. Zheng, T. Matsumoto and H. Imai, On the construction of block provably
secure and not relying on any unproved hypotheses, in: Advances in Cryptology - CRYPTO '89 (ed. G. Brassard) , LNCS 435 (1990), Springer Berlin Heidelberg, 461-480.
Glasnik Matematicki Home Page