Glasnik Matematicki, Vol. 47, No. 2 (2012), 295-305.

EXCHANGE RINGS WITH MANY UNITS

Huanyin Chen

Department of Mathematics, Hangzhou Normal University, Hangzhou 310036, China
e-mail: huanyinchen@yahoo.cn


Abstract.   A ring R satisfies Goodearl-Menal condition provided that for any x,y R, there exists a u U(R) such that x-u,y-u-1 U(R). If R/J(R) is an exchange ring with primitive factors artinian, then R satisfies Goodearl-Menal condition if, and only if it has no homomorphic images Z/2Z, Z/3Z, M2 (Z/2Z). Exchange rings satisfying the primitive criterion are also studied.

2010 Mathematics Subject Classification.   16E50, 16U99.

Key words and phrases.   Goodearl-Menal condition, exchange ring, semilocal ring.


Full text (PDF) (free access)

DOI: 10.3336/gm.47.2.06


References:

  1. H. Chen, Exchange rings with Artinian primitive factors, Algebr. Represent. Theory 2 (1999), 201-207.
    MathSciNet     CrossRef

  2. H. Chen, Exchange rings satisfying unit 1-stable range, Kyushu J. Math. 54 (2000), 1-6.
    MathSciNet     CrossRef

  3. H. Chen, Units, idempotents, and stable range conditions, Comm. Algebra 29 (2001), 703-717.
    MathSciNet     CrossRef

  4. H. Chen, Decompositions of countable linear transformations, Glasg. Math. J. 52 (2010), 427-433.
    MathSciNet     CrossRef

  5. L. Wang and Y. Zhou, Decompositions of linear transformations, Bull. Aust. Math. Soc., to appear.

  6. K. R. Goodearl and P. Menal, Stable range one for rings with many units, J. Pure Appl. Algebra 54 (1988), 261-287.
    MathSciNet     CrossRef

  7. C. Huh, N. K. Kim and Y. Lee, On exchange rings with primitive factor rings Artinian, Comm. Algebra 28 (2000), 4989-4993.
    MathSciNet     CrossRef

  8. B. R. McDonald, Projectivities over rings with many units, Comm. Algebra 9 (1981), 195-204.
    MathSciNet     CrossRef

  9. P. Menal, On π-regular rings whose primitive factor rings are artinian, J.Pure Appl. Algebra 20 (1981), 71-78.
    MathSciNet     CrossRef

  10. F. Perera, Lifting units modulo exchange ideals and C*-algebras with real rank zero, J. Reine Angew. Math. 522 (2000), 51-62.
    MathSciNet     CrossRef

  11. J. Rosenberg, Algebraic K-theory and its applications, Springer-Verlag, New York, 1994.
    MathSciNet    

  12. A. A. Tuganbaev, Rings close to regular, Kluwer Academic Publishers, Dordrecht, 2002.
    MathSciNet    

  13. H. P. Yu, Stable range one for exchange rings, J. Pure Appl. Algebra 98 (1995), 105-109.
    MathSciNet     CrossRef

  14. H. P. Yu, On the structure of exchange rings, Comm. Algebra 25 (1997), 661-670.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page