Glasnik Matematicki, Vol. 47, No. 1 (2012), 187-192.

CONCERNING N-MUTUAL APOSYNDESIS IN HYPERSPACES

Alejandro Illanes

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Cd. Universitaria, México, 04510, D.F.
e-mail: illanes@matem.unam.mx


Abstract.   Given a metric continuum X, let 2X denote the hyperspace of nonempty closed subsets of X. We prove that 2X is n-mutually aposyndetic for each n≥ 1. That is, given n distinct elements of 2X, there are n disjoint subcontinua of 2X, each containing one of the elements in its interior.

2010 Mathematics Subject Classification.   54B20, 54F15.

Key words and phrases.   Continuum, hyperspace, n-mutual aposyndesis.


Full text (PDF) (free access)

DOI: 10.3336/gm.47.1.17


References:

  1. M. E. Aguilera and A. Illanes, Connectedness properties of the hyperspaces Cε (X), to appear in Houston J. Math.

  2. H. Hosokawa, Mutual aposyndesis of n-fold hyperspaces, Houston J. Math. 35 (2009), 131-137.
    MathSciNet    

  3. A. Illanes and J. M. Martínez-Montejano, Zero-dimensional closed set aposyndesis and symmetric products, Houston J. Math. 37 (2011), 1333-1346.
    MathSciNet    

  4. A. Illanes and J. M. Martínez-Montejano, Concerning k-mutual aposyndesis in symmetric products, preprint.

  5. A. Illanes and S. B. Nadler, Jr., Hyperspaces. Fundamentals and recent advances, Monographs and Textbooks in Pure and Applied Mathematics 216, Marcel Dekker, Inc., New York and Basel, 1999.
    MathSciNet    

  6. J. M. Martínez-Montejano, Mutual aposyndesis of symmetric products, Proceedings of the 1999 Topology and Dynamics Conference (Salt Lake City, UT), Topology Proc. 24 (1999), 203-213.
    MathSciNet    

  7. J. M. Martínez-Montejano, Zero-dimensional closed set aposyndesis and hyperspaces, Houston J. Math. 32 (2006), 1101-1105.
    MathSciNet    

  8. J. M. Martínez-Montejano, Mutual aposyndesis of the hyperspace of compact sets, Questions Answers Gen. Topology 28 (2010), 197-201.
    MathSciNet    

  9. L. E. Rogers, Concerning n-mutual aposyndesis in products of continua, Trans. Amer. Math. Soc. 169 (1971), 239-251.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page