Glasnik Matematicki, Vol. 47, No. 1 (2012), 187-192.
CONCERNING N-MUTUAL APOSYNDESIS IN HYPERSPACES
Alejandro Illanes
Instituto de Matemáticas,
Universidad Nacional Autónoma de México,
Circuito Exterior, Cd. Universitaria,
México, 04510, D.F.
e-mail: illanes@matem.unam.mx
Abstract. Given a metric continuum X, let 2X denote the hyperspace of nonempty
closed subsets of X. We prove that 2X is n-mutually aposyndetic for
each n≥ 1. That is, given n distinct elements of 2X, there are n disjoint subcontinua of 2X, each containing one of the elements in
its interior.
2010 Mathematics Subject Classification.
54B20, 54F15.
Key words and phrases. Continuum, hyperspace, n-mutual aposyndesis.
Full text (PDF) (free access)
DOI: 10.3336/gm.47.1.17
References:
- M. E. Aguilera and A. Illanes, Connectedness properties of the
hyperspaces Cε (X), to appear in Houston J. Math.
- H. Hosokawa, Mutual aposyndesis of n-fold hyperspaces, Houston J. Math. 35 (2009), 131-137.
MathSciNet
- A. Illanes and J. M. Martínez-Montejano, Zero-dimensional
closed set aposyndesis and symmetric products, Houston J. Math. 37 (2011), 1333-1346.
MathSciNet
- A. Illanes and J. M. Martínez-Montejano, Concerning k-mutual aposyndesis in symmetric products, preprint.
- A. Illanes and S. B. Nadler, Jr., Hyperspaces. Fundamentals and
recent advances, Monographs and Textbooks in Pure and Applied Mathematics 216, Marcel Dekker, Inc., New York and Basel, 1999.
MathSciNet
- J. M. Martínez-Montejano, Mutual aposyndesis of symmetric
products, Proceedings of the 1999 Topology and Dynamics Conference (Salt
Lake City, UT), Topology Proc. 24 (1999), 203-213.
MathSciNet
- J. M. Martínez-Montejano, Zero-dimensional closed set
aposyndesis and hyperspaces, Houston J. Math. 32 (2006), 1101-1105.
MathSciNet
- J. M. Martínez-Montejano, Mutual aposyndesis of the
hyperspace of compact sets, Questions Answers Gen. Topology 28 (2010), 197-201.
MathSciNet
- L. E. Rogers, Concerning n-mutual aposyndesis in
products of continua, Trans. Amer. Math. Soc. 169 (1971), 239-251.
MathSciNet
CrossRef
Glasnik Matematicki Home Page