Glasnik Matematicki, Vol. 47, No. 1 (2012), 181-186.

THE SPECIAL HYPERSURFACES OF MINKOWSKI SPACE

Jintang Li

School of Mathematical Sciences, Xiamen University, 361005 Xiamen, Fujian, China
e-mail: dli66@xmu.edu.cn


Abstract.   Let x:(Mn,F) (Vn+1, F̄) be a simply connected hypersurface in a Minkowski space (Vn+1, F̄). In this paper, using the Gauss formula of Chern connection on Finsler submanifolds, we shall prove that if x(p) is normal to Tp(M) (∀ p M), then M with the induced metric is isometric to the standard Euclidean sphere.

2010 Mathematics Subject Classification.   53C60, 53C40.

Key words and phrases.   Finsler manifolds, Gauss formula, Minkowski space.


Full text (PDF) (free access)

DOI: 10.3336/gm.47.1.16


References:

  1. D. Bao and S. S. Chern, On a notable connection in Finsler geometry, Houston J. Math. 19 (1993), 135-180.
    MathSciNet    

  2. D. Bao, S. S. Chern and Z. Shen, An introduction to Riemann-Finsler geometry, Springer-Verlag, 2000.
    MathSciNet     CrossRef

  3. S. S. Chern, Local equivalence and Euclidean connection in Finsler spaces, Sci. Rep. Nat. Tsing Hua Univ. Ser. A. 5 (1948), 95-121.
    MathSciNet    

  4. J. T. Li, The fundamental formulas of Finsler submanifolds, Bull. Korean Math. Soc. 47 (2010), 767-775.
    MathSciNet     CrossRef

  5. Z. Shen, On Finsler geometry of submanifolds, Math. Ann. 311 (1998), 549-576.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page