Glasnik Matematicki, Vol. 47, No. 1 (2012), 165-174.
WEIGHTED VARIABLE EXPONENT AMALGAM SPACES W(LP(X),LWQ)
İsmail Aydin and A. Turan Gürkanli
Department of Mathematics,
Faculty of Arts and Sciences,
Sinop University,
57000, Sinop,
Turkey
e-mail: iaydin@sinop.edu.tr
Department of Mathematics,
Faculty of Arts and Sciences,
Ondokuz Mayıs University,
55139, Kurupelit, Samsun,
Turkey
e-mail: gurkanli@omu.edu.tr
Abstract. In the present paper a new family of Wiener amalgam spaces
W(Lp(x),Lwq) is defined, with local component which is a variable
exponent Lebesgue space Lp(x)(Rn) and the global component is a weighted Lebesgue space
Lwq(Rn). We proceed to show that these Wiener amalgam spaces are
Banach function spaces. We also present new Hölder-type inequalities and
embeddings for these spaces. At the end of this paper we show that under
some conditions the Hardy-Littlewood maximal function is not mapping the
space W(Lp(x),Lwq) into itself.
2010 Mathematics Subject Classification.
42B25,42B35.
Key words and phrases. Variable exponent Lebesgue
space, Hardy-Littlewood maximal function, Wiener amalgam space.
Full text (PDF) (free access)
DOI: 10.3336/gm.47.1.14
References:
- I. Aydın and A. T. Gürkanlı, On some properties of the
spaces Awp(x)(Rn), Proc. Jangjeon Math. Soc. 12 (2009), 141-155.
MathSciNet
- J. Bergh and J. Löfström, Interpolation spaces. An
introduction, Springer-Verlag, Berlin, Heidelberg, New York, 1976.
MathSciNet
CrossRef
- D. Cruz Uribe and A. Fiorenza, LlogL results for the maximal
operator in variable Lp spaces, Trans. Amer. Math. Soc. 361,
(2009), 2631-2647.
MathSciNet
CrossRef
- D. Cruz Uribe, A. Fiorenza, J. M. Martell and C. Perez Moreno,
The boundedness of classical operators on variable Lp spaces, Ann.
Acad. Sci. Fenn. Math. 31 (2006), 239-264.
MathSciNet
- L. Diening, Maximal function on generalized Lebesgue spaces Lp(.), Math. Inequal. Appl. 7 (2004),
245-253.
MathSciNet
- L. Diening, P. Hästö and A. Nekvinda, Open problems in
variable exponent Lebesgue and Sobolev spaces, In FSDONA04 Proc. (Milovy,
Czech Republic, 2004), 38-58.
- L. Diening, P. Hästö, and S. Roudenko, Function spaces of
variable smoothness and integrability, J. Funct. Anal. 256 (2009),
1731-1768.
MathSciNet
CrossRef
- D. Edmunds, J. Lang, and A. Nekvinda, On Lp(x) norms, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), 219-225.
MathSciNet
CrossRef
- H. G. Feichtinger, Banach convolution algebras of Wiener type,
in Proc. Conf. functions, series, operators (Budapest, 1980), Colloq. Math.
Soc. János Bolyai, North-Holland, 1983, 509-524.
- H. G. Feichtinger, Banach spaces of distributions of Wiener's
type and interpolation, in Proc. Conf. Functional analysis
and approximation (Oberwolfach, 1980), Birkhäuser-Verlag, Basel-Boston, 1981, 153-165.
MathSciNet
- H. G. Feichtinger and K. H. Gröchenig, Banach spaces related
to integrable group representations and their atomic decompositions. I, J.
Funct. Anal. 86 (1989), 307-340.
MathSciNet
CrossRef
- H. G. Feichtinger and A. T. Gürkanli, On a family of weighted
convolution algebras, Internat. J. Math. Math. Sci. 13 (1990),
517-525.
MathSciNet
CrossRef
- R. H. Fischer, A. T. Gürkanlı and T. S. Liu, On a family of
Wiener type spaces, Internat. J. Math. Math. Sci. 19 (1996),
57-66.
MathSciNet
CrossRef
- R. H. Fischer, A. T. Gürkanlı and T. S. Liu, On a family of
weighted spaces, Math. Slovaca 46 (1996), 71-82.
MathSciNet
- J. J. Fournier and J. Stewart, Amalgams of Lpand lq, Bull. Amer. Math. Soc. (N.S.) 13 (1985), 1-21.
MathSciNet
CrossRef
- C. Heil, An introduction to weighted Wiener amalgams, in:
Wavelets and their applications (Chennai, January 2002), Allied Publishers,
New Delhi, 2003, 183-216.
- F. Holland, Square-summable positive-definite functions on the
real line, Linear Operators Approx. II, Internat. Ser. Numer. Math. 25, Birkhäuser, Basel, 1974, 247-257.
MathSciNet
- F. Holland, Harmonic analysis on amalgams of Lpand lq, J. London Math. Soc. (2) 10 (1975), 295-305.
MathSciNet
CrossRef
- O. Kovacik and J. Rakosnik, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J. 41(116) (1991), 592-618.
MathSciNet
- S. G. Samko, Convolution type operators in Lp(x), Integral
Transform. Spec. Funct. 7 (1998), 123-144.
MathSciNet
CrossRef
- E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970.
MathSciNet
- N. Wiener, Generalized harmonic analysis and Tauberian theorems, The
M.I.T. Press, 1966.
MathSciNet
Glasnik Matematicki Home Page