Glasnik Matematicki, Vol. 47, No. 1 (2012), 165-174.

WEIGHTED VARIABLE EXPONENT AMALGAM SPACES W(LP(X),LWQ)

İsmail Aydin and A. Turan Gürkanli

Department of Mathematics, Faculty of Arts and Sciences, Sinop University, 57000, Sinop, Turkey
e-mail: iaydin@sinop.edu.tr

Department of Mathematics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139, Kurupelit, Samsun, Turkey
e-mail: gurkanli@omu.edu.tr


Abstract.   In the present paper a new family of Wiener amalgam spaces W(Lp(x),Lwq) is defined, with local component which is a variable exponent Lebesgue space Lp(x)(Rn) and the global component is a weighted Lebesgue space Lwq(Rn). We proceed to show that these Wiener amalgam spaces are Banach function spaces. We also present new Hölder-type inequalities and embeddings for these spaces. At the end of this paper we show that under some conditions the Hardy-Littlewood maximal function is not mapping the space W(Lp(x),Lwq) into itself.

2010 Mathematics Subject Classification.   42B25,42B35.

Key words and phrases.   Variable exponent Lebesgue space, Hardy-Littlewood maximal function, Wiener amalgam space.


Full text (PDF) (free access)

DOI: 10.3336/gm.47.1.14


References:

  1. I. Aydın and A. T. Gürkanlı, On some properties of the spaces Awp(x)(Rn), Proc. Jangjeon Math. Soc. 12 (2009), 141-155.
    MathSciNet    

  2. J. Bergh and J. Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin, Heidelberg, New York, 1976.
    MathSciNet     CrossRef

  3. D. Cruz Uribe and A. Fiorenza, LlogL results for the maximal operator in variable Lp spaces, Trans. Amer. Math. Soc. 361, (2009), 2631-2647.
    MathSciNet     CrossRef

  4. D. Cruz Uribe, A. Fiorenza, J. M. Martell and C. Perez Moreno, The boundedness of classical operators on variable Lp spaces, Ann. Acad. Sci. Fenn. Math. 31 (2006), 239-264.
    MathSciNet    

  5. L. Diening, Maximal function on generalized Lebesgue spaces Lp(.), Math. Inequal. Appl. 7 (2004), 245-253.
    MathSciNet    

  6. L. Diening, P. Hästö and A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces, In FSDONA04 Proc. (Milovy, Czech Republic, 2004), 38-58.

  7. L. Diening, P. Hästö, and S. Roudenko, Function spaces of variable smoothness and integrability, J. Funct. Anal. 256 (2009), 1731-1768.
    MathSciNet     CrossRef

  8. D. Edmunds, J. Lang, and A. Nekvinda, On Lp(x) norms, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), 219-225.
    MathSciNet     CrossRef

  9. H. G. Feichtinger, Banach convolution algebras of Wiener type, in Proc. Conf. functions, series, operators (Budapest, 1980), Colloq. Math. Soc. János Bolyai, North-Holland, 1983, 509-524.

  10. H. G. Feichtinger, Banach spaces of distributions of Wiener's type and interpolation, in Proc. Conf. Functional analysis and approximation (Oberwolfach, 1980), Birkhäuser-Verlag, Basel-Boston, 1981, 153-165.
    MathSciNet    

  11. H. G. Feichtinger and K. H. Gröchenig, Banach spaces related to integrable group representations and their atomic decompositions. I, J. Funct. Anal. 86 (1989), 307-340.
    MathSciNet     CrossRef

  12. H. G. Feichtinger and A. T. Gürkanli, On a family of weighted convolution algebras, Internat. J. Math. Math. Sci. 13 (1990), 517-525.
    MathSciNet     CrossRef

  13. R. H. Fischer, A. T. Gürkanlı and T. S. Liu, On a family of Wiener type spaces, Internat. J. Math. Math. Sci. 19 (1996), 57-66.
    MathSciNet     CrossRef

  14. R. H. Fischer, A. T. Gürkanlı and T. S. Liu, On a family of weighted spaces, Math. Slovaca 46 (1996), 71-82.
    MathSciNet    

  15. J. J. Fournier and J. Stewart, Amalgams of Lpand lq, Bull. Amer. Math. Soc. (N.S.) 13 (1985), 1-21.
    MathSciNet     CrossRef

  16. C. Heil, An introduction to weighted Wiener amalgams, in: Wavelets and their applications (Chennai, January 2002), Allied Publishers, New Delhi, 2003, 183-216.

  17. F. Holland, Square-summable positive-definite functions on the real line, Linear Operators Approx. II, Internat. Ser. Numer. Math. 25, Birkhäuser, Basel, 1974, 247-257.
    MathSciNet    

  18. F. Holland, Harmonic analysis on amalgams of Lpand lq, J. London Math. Soc. (2) 10 (1975), 295-305.
    MathSciNet     CrossRef

  19. O. Kovacik and J. Rakosnik, On spaces Lp(x) and Wk,p(x), Czechoslovak Math. J. 41(116) (1991), 592-618.
    MathSciNet    

  20. S. G. Samko, Convolution type operators in Lp(x), Integral Transform. Spec. Funct. 7 (1998), 123-144.
    MathSciNet     CrossRef

  21. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970.
    MathSciNet    

  22. N. Wiener, Generalized harmonic analysis and Tauberian theorems, The M.I.T. Press, 1966.
    MathSciNet    

Glasnik Matematicki Home Page