Glasnik Matematicki, Vol. 47, No. 1 (2012), 153-164.

ON THE STRUCTURE OF THE AUTOMORPHISM GROUP OF A MINIMAL NONABELIAN P-GROUP (METACYCLIC CASE)

Izabela Malinowska

Institute of Mathematics, University of Białystok, ul. Akademicka 2, 15-267 Białystok, Poland
e-mail: izabelam@math.uwb.edu.pl


Abstract.   In this paper we find the complete structure for the automorphism groups of metacyclic minimal nonabelian 2-groups. This, together with [6,7], gives the complete answer to the Question 15 from [5] (respectively Question 20 from [4]) in the case of metacyclic groups. We also correct some inaccuracies and extend the results from [13].

2010 Mathematics Subject Classification.   20D45, 20D15.

Key words and phrases.   Automorphisms, p-groups.


Full text (PDF) (free access)

DOI: 10.3336/gm.47.1.13


References:

  1. Y. Berkovich, Groups of prime power order, vol. 1, Walter de Gruyter, 2008.
    MathSciNet    

  2. Y. Berkovich and Z. Janko, Groups of prime power order, vol. 2, Walter de Gruyter, 2008.
    MathSciNet    

  3. Y. Berkovich and Z. Janko, Groups of prime power order, vol. 3, Walter de Gruyter, 2011.
    MathSciNet    

  4. Y. Berkovich and Z. Janko, On subgroups of finite p-groups, Israel J. Math. 171 (2009), 29-49.
    MathSciNet     CrossRef

  5. Y. Berkovich and Z. Janko, Structure of finite p-groups with given subgroups, Contemp. Math. 402, 2006, 13-93.
    MathSciNet     CrossRef

  6. J. N. S. Bidwell and M. J. Curran, The automorphism group of a split metacyclic p-group, Arch. Math. (Basel) 87 (2006), 488-497.
    MathSciNet     CrossRef

  7. J. N. S. Bidwell and M. J. Curran, Corrigenum to ''The automorphism group of a split metacyclic p-group'' Arch. Math. 87 (2006), 488-497, Arch. Math. (Basel) 92 (2009), 14-18.
    MathSciNet     CrossRef

  8. M. J. Curran, The automorphism group of a split metacyclic 2-group, Arch. Math. (Basel) 89 (2007), 10-23.
    MathSciNet     CrossRef

  9. G. Glauberman, Abelian subgroups of small index in finite p-groups, J. Group Theory 8 (2005), 539-560.
    MathSciNet     CrossRef

  10. G. Glauberman, Centrally large subgroups of finite p-groups, J. Algebra 300 (2006), 480-508.
    MathSciNet     CrossRef

  11. B. Huppert, Endliche Gruppen. I, Berlin-Heidelberg-NewYork, Springer 1967.
    MathSciNet    

  12. Z. Janko, On minimal non-abelian subgroups in finite p-groups, J. Group Theory 12 (2009), 289-303.
    MathSciNet     CrossRef

  13. I. Malinowska, The automorphism group of a split metacyclic 2-group and some groups of crossed homomorphisms, Arch. Math. (Basel) 93 (2009), 99-109.
    MathSciNet     CrossRef

  14. F. Menegazzo, Automorphisms of p-groups with cyclic commutator subgroup, Rend. Sem. Mat. Univ. Padova 90 (1993), 81-101.
    MathSciNet     CrossRef

  15. F. Zhou and H. Liu, Automorphism groups of semidirect products, Arch. Math. (Basel) 91 (2008), 193-198.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page