Glasnik Matematicki, Vol. 47, No. 1 (2012), 149-152.

ALTERNATE PROOF OF THE REINHOLD BAER THEOREM ON 2-GROUPS WITH NONABELIAN NORM

Yakov Berkovich

Department of Mathematics, University of Haifa, Mount Carmel, Haifa 31905, Israel


Abstract.   We present a new easy proof of the classical theorem due to Reinhold Baer asserting that the nonabelian norm of a 2-group G coincides with G, i.e., G is Dedekindian. Our proof is independent of all papers devoted to this theme.

2010 Mathematics Subject Classification.   20D15.

Key words and phrases.   Norm, ordinary quaternion group, Dedekindian groups, 2-groups of maximal class, 2-groups with nonabelian norm.


Full text (PDF) (free access)

DOI: 10.3336/gm.47.1.12


References:

  1. R. Baer, Der Kern, eine charakteristische Untergruppe, Compositio Math. 1 (1935), 254-283.
    MathSciNet     CrossRef

  2. R. Baer, Gruppen mit hamiltonschem Kern, Compositio Math. 2 (1935), 241-246.
    MathSciNet     CrossRef

  3. R. Baer, Norm and hypernorm, Publ. Math. Debrecen 4 (1956), 347-350.
    MathSciNet    

  4. C. Beidleman, H. Heineken and M. Newell, Centre and norm, Bull. Austral. Math. Soc. 69 (2004), 457-464.
    MathSciNet     CrossRef

  5. Y. Berkovich, Groups of prime power order. Vol. 1, Walter de Gruyter, Berlin, 2008.
    MathSciNet    

  6. Y. Berkovich and Z. Janko, Groups of prime power order. Vol. 3, Walter de Gruyter, Berlin, 2011.
    MathSciNet    

  7. M. Hall, Jr., The theory of groups, Macmillan, New York, 1959.
    MathSciNet    

  8. E. Schenkman, On the norm of a group, Illinois J. Math. 4 (1960), 150-152.
    MathSciNet     CrossRef

  9. L. T. Wos, On commutative prime power subgroups of the norm, Illinois J. Math. 2 (1958), 271-284.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page