Glasnik Matematicki, Vol. 47, No. 1 (2012), 149-152.
ALTERNATE PROOF OF THE REINHOLD
BAER THEOREM ON 2-GROUPS WITH NONABELIAN
NORM
Yakov Berkovich
Department of Mathematics,
University of Haifa,
Mount Carmel, Haifa 31905,
Israel
Abstract. We present a new easy proof of
the classical theorem due to Reinhold Baer
asserting that the nonabelian norm of a
2-group G coincides with G, i.e., G is
Dedekindian. Our proof is independent of all
papers devoted to this theme.
2010 Mathematics Subject Classification.
20D15.
Key words and phrases. Norm, ordinary quaternion group,
Dedekindian groups, 2-groups of maximal class,
2-groups with nonabelian norm.
Full text (PDF) (free access)
DOI: 10.3336/gm.47.1.12
References:
- R. Baer, Der Kern, eine charakteristische Untergruppe, Compositio Math. 1 (1935), 254-283.
MathSciNet
CrossRef
- R. Baer, Gruppen mit hamiltonschem Kern,
Compositio Math. 2 (1935), 241-246.
MathSciNet
CrossRef
- R. Baer, Norm and hypernorm, Publ.
Math. Debrecen 4 (1956), 347-350.
MathSciNet
- C. Beidleman, H. Heineken and M. Newell,
Centre and norm, Bull. Austral. Math. Soc. 69 (2004), 457-464.
MathSciNet
CrossRef
- Y. Berkovich, Groups of prime power
order. Vol. 1, Walter de Gruyter, Berlin,
2008.
MathSciNet
- Y. Berkovich and Z. Janko, Groups of prime
power order. Vol. 3, Walter de Gruyter,
Berlin, 2011.
MathSciNet
- M. Hall, Jr., The theory of groups, Macmillan,
New York, 1959.
MathSciNet
- E. Schenkman, On the norm of a group,
Illinois J. Math. 4 (1960), 150-152.
MathSciNet
CrossRef
- L. T. Wos, On commutative prime power
subgroups of the norm, Illinois J. Math. 2
(1958), 271-284.
MathSciNet
CrossRef
Glasnik Matematicki Home Page