Glasnik Matematicki, Vol. 47, No. 1 (2012), 105-118.

ON (ANTI-)MULTIPLICATIVE GENERALIZED DERIVATIONS

Daniel Eremita and Dijana Ilišević

Department of Mathematics and Computer Science, FNM, University of Maribor, 2000 Maribor, Slovenia
e-mail: daniel.eremita@uni-mb.si

Department of Mathematics, University of Zagreb, Bijenička 30, P.O.Box 335, 10002 Zagreb, Croatia
e-mail: ilisevic@math.hr


Abstract.   Let R be a semiprime ring and let F, f : R → R be (not necessarily additive) maps satisfying F(xy)=F(x)y+xf(y) for all x,y R. Suppose that there are integers m and n such that F(uv)=mF(u)F(v)+nF(v)F(u) for all u, v in some nonzero ideal I of R. Under some mild assumptions on R, we prove that there exists c C(I⊥⊥) such that c=(m+n)c2, nc[I⊥⊥, I⊥⊥]=0 and F(x)=cx for all x I⊥⊥. The main result is then applied to the case when F is multiplicative or anti-multiplicative on I.

2010 Mathematics Subject Classification.   16U99, 16N60, 39B52, 47B47.

Key words and phrases.   Additivity, ring, semiprime ring, prime ring, derivation, generalized derivation, homomorphism, anti-homomorphism.


Full text (PDF) (free access)

DOI: 10.3336/gm.47.1.08


References:

  1. A. Asma, N. Rehman and A. Shakir, On Lie ideals with derivations as homomorphisms and anti-homomorphisms, Acta Math. Hungar. 101 (2003), 79-82.
    MathSciNet     CrossRef

  2. K. I. Beidar, W. S. Martindale, III and A. V. Mikhalev, Rings with generalized identities, Marcel Dekker, Inc., 1996.
    MathSciNet    

  3. H. E. Bell and L.-C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53 (1989), 339-346.
    MathSciNet     CrossRef

  4. M. Brešar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), 89-93.
    MathSciNet     CrossRef

  5. D. Eremita and D. Ilišević, On additivity of centralisers, Bull. Austral. Math. Soc. 74 (2006), 177-184.
    MathSciNet     CrossRef

  6. V. de Filippis, Generalized derivations as Jordan homomorphisms on Lie ideals and right ideals, Acta Math. Sin. (Engl. Ser.) 25 (2009), 1965-1974.
    MathSciNet     CrossRef

  7. O. Gëlbasi and K. Kaya, On Lie ideals with generalized derivations, Siberian Math. J. 47 (2006), 862-866.
    MathSciNet     CrossRef

  8. I. Gusić, A note on generalized derivations of prime rings, Glas. Mat. Ser. III 40(60) (2005), 47-49.
    MathSciNet     CrossRef

  9. I. N. Herstein, Topics in ring theory, The University of Chicago Press, Chicago, 1969.
    MathSciNet    

  10. T.-K. Lee, Generalized derivations of left faithful rings, Comm. Algebra 27 (1999), 4057-4073.
    MathSciNet     CrossRef

  11. N. Rehman, On generalized derivations as homomorphisms and anti-homomorphisms, Glas. Mat. Ser. III 39(59) (2004), 27-30.
    MathSciNet     CrossRef

  12. Y. Wang and H. You, Derivations as homomorphisms or anti-homomorphisms on Lie ideals, Acta Math. Sin. (Engl. Ser.) 23 (2007), 1149-1152.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page