Glasnik Matematicki, Vol. 47, No. 1 (2012), 81-93.
ON THE FAMILY OF ELLIPTIC CURVES Y2=X3-T2X+1
Petra Tadić
Martićeva 23, 10000 Zagreb, Croatia
e-mail: petra.tadic.zg@gmail.com
Abstract. Let E be the elliptic curve over Q(T) given by the equation
E:Y2=X3-T2X+1.
We prove that the torsion subgroup of the group E(C(T)) is trivial, rankQ(T)(E)=3 and rankC(T)(E)=4. We find a parametrization of E of rank at least four over the function field Q(a,i,s,n,k) where s2=i3-a2i. From this we get a family of rank ≥ 5 over the field of rational functions in two variables and a family of rank ≥ 6 over an elliptic curve of positive rank. We also found particular elliptic curves with rank ≥ 11.
2010 Mathematics Subject Classification.
11G05, 14H52.
Key words and phrases. Elliptic surface, elliptic curve, parametrization, function field, rank, family of elliptic curves, torsion.
Full text (PDF) (free access)
DOI: 10.3336/gm.47.1.06
References:
- A. Antoniewicz, On a family of elliptic curves, Univ. Iagel. Acta Math. 43 (2005), 21-32.
MathSciNet
- I. Connell, APECS, ftp://ftp.math.mcgill.ca/pub/apecs/.
- A. Dujella, A. S. Janfada and S. Salami, A search for high rank congruent number elliptic curves, J. Integer Seq. 12 (2009), Article 09.5.8, 11pp.
MathSciNet
- A. Dujella, A. Pethơ and P. Tadić, On arithmetic progressions on Pellian equations, Acta Math. Hungar. 120 (2008), 29-38.
CrossRef
- A. Dujella, On the Mordell-Weil groups of elliptic curves induced by Diophantine triples, Glas. Mat. Ser. III 42 (2007), 3-18.
MathSciNet
CrossRef
- E. V. Eikenberg, Rational points on some families of elliptic curves, University of Maryland, 2004, PhD thesis.
MathSciNet
- J.-F. Mestre, Construction d'une courbe elliptique de rang ≥12, C. R. Acad. Sci. Paris Sér. Math. I 295 (1982) 643-644.
MathSciNet
- R. Miranda, An overview of algebraic surfaces,
in: Algebraic geometry (Ankara,1995), Lecture Notes in Pure and Appl. Math. 193, Dekker, New York, 1997, 197-217.
MathSciNet
- K. Nagao, An example of elliptic curve over Q with rank ≥ 20, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 291-293.
MathSciNet
CrossRef
- C. Batut, K. Belabas, D. Bernardi, H. Cohen and M. Olivier, The computer algebra system PARI - GP, Université Bordeaux I, 1999, http://pari.math.u-bordeaux.fr.
- N. F. Rogers, Elliptic curves x3+y3=k with high rank, Harvard University, 2004, PhD thesis.
MathSciNet
- T. Shioda,On the Mordell-Weil lattices, Comment. Math. Univ. St. Pauli 39 (1990), 211-240.
MathSciNet
- J. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics 151, Springer-Verlag, New York, 1994.
MathSciNet
CrossRef
Glasnik Matematicki Home Page