Glasnik Matematicki, Vol. 47, No. 1 (2012), 61-79.
SOME APPLICATIONS OF THE ABC-CONJECTURE TO THE DIOPHANTINE EQUATION QYM=F(X)
Ivica Gusić
Faculty of Chemical Engin. and Techn., University of Zagreb, Marulićev trg 19, 10000 Zagreb, Croatia
e-mail: igusic@fkit.hr
Abstract. Assume that the abc-conjecture is true.
Let f be a polynomial over Q of degree n≥
2 and let m≥ 2 be an integer such that the curve ym=f(x) has genus ≥ 2.
A. Granville in [3] proved that there is a set of exceptional pairs (m,n) such that
if (m,n) is not exceptional, then the equation dym=f(x) has only
trivial rational solutions, for almost all m-free integers d. We prove that the result can be partially
extended on the set of exceptional pairs. For example, we prove that if f is completely reducible
over Q and n ≠ 2, then the equation qym=f(x) has only trivial rational solutions,
for all but finitely many prime numbers q.
2010 Mathematics Subject Classification.
11D45, 11D41.
Key words and phrases. abc-conjecture, Diophantine equation.
Full text (PDF) (free access)
DOI: 10.3336/gm.47.1.05
References:
-
E. Bombieri, W. M. Schmidt, On Thue's equation, Invent. Math. 88 (1987), 69-81.
MathSciNet
CrossRef
-
S. R. Finch, Mathematical constants, Cambridge University Press, Cambridge, 2003.
MathSciNet
-
A. Granville, Rational and integral points on quadratic twists of a given hyperelliptic curve,
Int. Math. Res. Not. IMRN 2007 Art. ID 027, 24pp.
MathSciNet
-
I. Gusić, A characterization of linear polynomials, J.
Number Theory 115 (2005), 343-347.
MathSciNet
CrossRef
-
I. Gusić, A remark on Diophantine equation f(x)=g(y), Glas. Mat. Ser. III 46(66) (2011), 333-338.
MathSciNet
CrossRef
-
G. H. Hardy, E. M. Wright, An introduction to the theory of numbers, sixth edition, Oxford University Press, Oxford, 2008.
MathSciNet
-
M. Hindry, J. H. Silverman, Diophantine geometry, an introduction,
GTM 201, Springer, 2000.
MathSciNet
-
M. N. Huxley, Exponential sums and lattice points III.,
Proc. London Math. Soc. 87 (2003), 591-609.
MathSciNet
CrossRef
-
J. C. Koo, On holomorphic differentials of some algebraic
function field of one variable over C,
Bull. Austral. Math. Soc. 43 (1991), 399-405.
MathSciNet
CrossRef
-
B. Mazur, K. Rubin, Ranks of twists of elliptic curves and
Hilberts tenth problem, Invent. Math. 181 (2010), 541-575.
MathSciNet
CrossRef
-
J. Nakagawa, K. Horie, Elliptic curves with no rational
points, Proc. Amer. Math. Soc. 104 (1988), 20-24.
MathSciNet
CrossRef
- K. Ono, C. Skinner, Non-vanishing of quadratic twists of modular L-functions,
Invent. Math. 134 (1998), 651-660.
MathSciNet
CrossRef
- A. Pethơ, V. Ziegler, Arithmetic progressions on Pell equations,
J. Number Theory 128 (2008), 1389-1409.
MathSciNet
CrossRef
-
A. Schinzel, Polynomials with special regard to reducibility, Cambridge University Press, Cambridge, 2000.
MathSciNet
CrossRef
- J. P. Serre, On a theorem of Jordan,
Bull. Amer. Math. Soc. 40 (2003), 429-440.
MathSciNet
CrossRef
- J. H. Silverman, The arithmetic of elliptic curves,
GTM 106, Springer, Berlin, 1986.
MathSciNet
- H. M. Stark, On the asymptotic density of the k-free integers,
Proc. Amer. Math. Soc. 17 (1966), 1211-1214.
MathSciNet
CrossRef
- C. L. Stewart, On the number of solutions of polynomial congruences and Thue equation,
J. Amer. Math. Soc. 4 (1991), 793-835.
MathSciNet
CrossRef
- M. Stoll, On the arithmetic of the curves y2 = xl + A and their Jacobians,
J. Reine Angew. Math. 501 (1998), 171-189.
MathSciNet
CrossRef
Glasnik Matematicki Home Page