Glasnik Matematicki, Vol. 47, No. 1 (2012), 53-59.
A NOTE ON THE SIMULTANEOUS PELL EQUATIONS X2-AY2=1 AND Z2-BY2=1
Maohua Le
Department of Mathematics, Zhanjiang Normal College,
Zhanjiang, Guangdong 524048, P.R. China
e-mail: lemaohua2008@163.com
Abstract. Let m,n be positive integers
with 1 < m < n. Let δ be a positive number with
1/2 < δ < 1 .
In this paper we prove that if gcd(m,n)>nδ and n>(8×
1016(log(1016/θ3))3/θ3)1/θ, where
θ=min(1-δ, 2δ-1), then the simultaneous Pell
equations x2-(m2-1)y2=1 and z2-(n2-1)y2=1
have only one positive integer solution (x,y,z)=(m,1,n).
2010 Mathematics Subject Classification.
11D09.
Key words and phrases. Simultaneous Pell equations; number of
solutions.
Full text (PDF) (free access)
DOI: 10.3336/gm.47.1.04
References:
-
M. A. Bennett, Solving families of simultaneous Pell
equations, J. Number Theory 67 (1997), 246-251.
MathSciNet
CrossRef
-
M. A. Bennett, On the number of solutions of simultaneous
Pell equations, J. Reine Angew. Math. 498 (1998), 173-199.
MathSciNet
CrossRef
-
M. A. Bennett, M. Cipu, M. Mignotte and R. Okazaki, On the number of solutions of simultaneous Pell equations, Acta Arith. 122 (2006), 407-417.
MathSciNet
CrossRef
-
M.-H. Le, On the simultaneous Pell equations x2-D1y2=δ and z2-D2y2=δ, Adv. Math. China 30 (2001), 87-88.
-
R. Lidl and H. Niederreiter, Finite
fields, Massachusetts, Addison-Wesley, Reading, 1983.
MathSciNet
-
D. W. Masser and J. H. Rickert, Simultaneous Pell
equations, J. Number Theory 61 (1996), 52-66.
MathSciNet
CrossRef
-
K. Ono, Euler's concordant forms, Acta Arith. 78 (1996), 101-123.
MathSciNet
-
J. H. Rickert, Simultaneous rational approximations and
related diophantine equations, Math. Proc. Cambridge Philos. Soc. 113 (1993), 461-472.
MathSciNet
CrossRef
-
H. P. Schlickewei, The number of subspaces occuring in the
p-adic subspace theorem in diophantine approximation,
J. Reine Angew. Math. 406 (1990), 44-108.
MathSciNet
CrossRef
-
W. M. Schmidt, Diophantine approximation, Springer Verlag, New York, 1980.
MathSciNet
-
C. L. Siegel, Über einige Anwendungen diophantischer
Approximationen, Abh. Preuss. Akad. Wiss. 1 (1929), 1-70.
-
A. Thue, Über Annäherungswerte algebraischer Zahlen, J. Reine Angew. Math. 135 (1909), 284-305.
-
P.-Z. Yuan, On the number of solutions of simultaneous Pell equations, Acta Arith. 101 (2002), 215-221.
MathSciNet
CrossRef
-
P.-Z. Yuan, Simultaneous Pell equations, Acta
Arith. 115 (2004), 119-131.
MathSciNet
CrossRef
Glasnik Matematicki Home Page