Glasnik Matematicki, Vol. 47, No. 1 (2012), 21-29.
RELATIONSHIP BETWEEN EDGE SZEGED AND EDGE WIENER INDICES OF
GRAPHS
Mohammad Javad Nadjafi-Arani, Hasan Khodashenas and Ali Reza Ashrafi
Department of Mathematics, Statistics and Computer Science,
Faculty of Science,
University of Kashan,
Kashan 87317-51167,
I. R. Iran
e-mail: mjnajafiarani@gmail.com
Department of Mathematics, Statistics and Computer Science,
Faculty of Science,
University of Kashan,
Kashan 87317-51167,
I. R. Iran
Department of Mathematics, Statistics and Computer Science,
Faculty of Science,
University of Kashan,
Kashan 87317-51167,
I. R. Iran
and
School of Mathematics,
Institute for Research in Fundamental Sciences (IPM),
P.O. Box: 19395-5746, Tehran,
I. R. Iran
e-mail: ashrafi@kashanu.ac.ir, alir.ashrafi@gmail.com
Abstract. Let G be a connected graph and ξ(G) = Sze(G) - We(G),
where We(G) denotes the edge Wiener index and Sze(G) denotes
the edge Szeged index of G. In an earlier paper, it is proved
that if T is a tree then Sze(T) = We(T). In this paper, we
continue our work to prove that for every connected graph G,
Sze(G) ≥ We(G) with equality if and only if G is a tree.
We also classify all graphs with ξ(G) ≤ 5. Finally, for
each non-negative integer n ≠ 1 there exists a graph G such
that ξ(G) = n.
2010 Mathematics Subject Classification.
05C12, 05A15, 05A20, 05C05.
Key words and phrases. Edge Szeged index, edge Wiener index.
Full text (PDF) (free access)
DOI: 10.3336/gm.47.1.02
References:
- A. R. Ashrafi and M. Mirzargar, PI, Szeged and edge
Szeged indices of nanostar dendrimers, Util. Math. 77 (2008), 249-255.
MathSciNet
- H.-J. Bandelt and H. M. Mulder, Distance-hereditary graphs, J. Combin. Theory Ser. B 41 (1986), 182-208.
MathSciNet
CrossRef
- P. Dankelmann, I. Gutman, S. Mukwembi and H. C. Swart, The edge-Wiener index of a graph, Discrete Math. 309 (2009), 3452-3457.
MathSciNet
CrossRef
- A. A. Dobrynin, R. Entringer and I. Gutman, Wiener index of
trees: theory and applications, Acta Appl. Math. 66 (2001),
211-249.
MathSciNet
CrossRef
- A. A. Dobrynin, I. Gutman, S. Klavzar and P. Zigert,
Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002), 247-294.
MathSciNet
CrossRef
- A. Dobrynin and I. Gutman, On a graph invariant related to the
sum of all distances in a graph, Publ. Inst. Math. (Beograd) (N.S.)
56(70) (1994), 18-22.
MathSciNet
- A. Dobrynin and I. Gutman, Solving a problem
connected with distances in graphs, Graph Theory Notes of New
York 28 (1995), 21-23.
- I. Gutman and A. R. Ashrafi, The edge version of the Szeged index,
Croat. Chem. Acta 81 (2008), 263-266.
- I. Gutman, A formula for the Wiener number of trees and its
extension to graphs containing cycles, Graph Theory Notes of New
York 27 (1994), 9-15.
- P. Hliněný and J. Kratochvil,
Computational complexity of the Krausz dimension of graphs,
Graph-theoretic concepts in computer science (Berlin, 1997),
214-228, Lecture Notes in Comput. Sci., 1335, Springer, Berlin,
1997.
MathSciNet
- M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi and S. Wagner,
Some new results on distance-based graph invariants, European J.
Combin. 30 (2009), 1149-1163.
MathSciNet
CrossRef
- H. Khodashenas, M. J. Nadjafi-Arani, A. R.
Ashrafi and I. Gutman, A new proof of the Szeged-Wiener theorem, Kragujevac J. Math. 35 (2011), 165-172.
MathSciNet
- S. Klavžar, A. Rajapakse and I. Gutman, The Szeged
and the Wiener index of graphs, Appl. Math. Lett. 9 (1996), 45-49.
MathSciNet
CrossRef
- J. Krausz, Démonstration nouvelle d'une théorème de
Whitney sur les réseaux, (Hungarian) Mat. Fiz.
Lapok 50 (1943), 75-85.
MathSciNet
- A. Ilić, S. Klavžar and M. Milanović, On distance-balanced
graphs, European J. Combin. 31 (2010), 733-737.
MathSciNet
CrossRef
- I. Lukovits, An all-path version of the Wiener
index, J. Chem. Inf. Comput. Sci. 38 (1998), 125-129.
CrossRef
- R. Todeschini and V. Consonni, Handbook of molecular descriptors,
Wiley, Weinheim, 2000.
CrossRef
- N. Trinajstić, Chemical graph theory, CRC Press, Boca Raton, FL.
1992.
- D. B. West, Introduction to graph theory, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.
- H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932), 150-168.
MathSciNet
CrossRef
- H. Wiener, Structural determination of
the paraffin boiling points, J. Am. Chem. Soc. 69 (1947),
17-20.
CrossRef
- S. Yousefi, H. Yousefi-Azari, A. R. Ashrafi and M. H. Khalifeh,
Computing Wiener and Szeged indices of an achiral polyhex nanotorus, J.
Sci. Univ. Tehran 33 (2007), 7-11.
MathSciNet
Glasnik Matematicki Home Page