Glasnik Matematicki, Vol. 46, No. 2 (2011), 513-519.
A NOTE ON TRIVIAL FIBRATIONS
Petar Pavešić
Fakulteta za Matematiko in Fiziko, Univerza v Ljubljani,
Jadranska 19, 1111 Ljubljana
e-mail: petar.pavesic@fmf.uni-lj.si
Abstract. We study the conditions on spaces B and F given which, every fibration with base B or with fibre F is fibre-homotopy trivial. In particular, we prove that every fibration whose
base is a CW-complex and fibre an Eilenberg-MacLane space K(G,1) with G a complete group
is fibre-homotopy trivial.
2000 Mathematics Subject Classification.
55R35.
Key words and phrases. Fibration, fibre-homotopy equivalence, complete group.
Full text (PDF) (free access)
DOI: 10.3336/gm.46.2.19
References:
- M. Arkowitz, Co-H-spaces, in: Handbook of Algebraic Topology, North-Holland Amsterdam, 1995, 1143-1173.
MathSciNet
- G. Didierjean, Homotopie de l'espace des equivalences d'homotopie, Trans. AMS 330 (1992), 153-163.
MathSciNet
CrossRef
- A. Dold, Partitions of unity in the theory of fibrations, Annal of Math. (2) 78 (1963), 223-255.
MathSciNet
CrossRef
- D. Gottlieb, The total space of universal fibrations, Pacific J. Math, 46, (1973), 415-417.
MathSciNet
CrossRef
- D. Gottlieb, Fibering suspensions, Houston J. Math. 4, (1978), 49-65.
MathSciNet
- I. James, Fibrewise topology, Cambridge Tracts in Mathematics 91, Cambridge University Press, Cambridge, 1989.
MathSciNet
- J. Rotman, An introduction to the theory of groups, Graduate Texts in Mathematics 148, Springer-Verlag, New York, 1995.
MathSciNet
- E. Schwamberger and R. Vogt, Dold spaces in homotopy theory, Algebr. Geom. Topol. 9 (2009), 1585-1622.
MathSciNet
CrossRef
- J. Smrekar, CW-type of inverse limits and function spaces, arXiv:0708.2838v1.
- A. Zabrodsky, Hopf spaces, North-Holland, Amsterdam, 1976.
MathSciNet
Glasnik Matematicki Home Page