Glasnik Matematicki, Vol. 46, No. 2 (2011), 505-511.
AN ALTERNATE PROOF THAT THE FUNDAMENTAL GROUP OF A PEANO CONTINUUM IS FINITELY
PRESENTED IF THE GROUP IS COUNTABLE
J. Dydak and Ž. Virk
University of Tennessee,
Knoxville, TN 37996,
USA
e-mail: dydak@math.utk.edu
e-mail: zigavirk@gmail.com
Abstract. We give an alternate proof, using coarse geometry, that if the fundamental
group of a compact, connected, locally connected metric space is countable, then
the fundamental group is finitely presented. This result was first proved by Katsuya Eda and the argument can be found in [5].
2000 Mathematics Subject Classification.
55Q52, 20F65, 14F35.
Key words and phrases. Coarse geometry, coarse connectivity, finitely presented groups, fundamental group, locally connected compact metric spaces.
Full text (PDF) (free access)
DOI: 10.3336/gm.46.2.18
References:
- R. H. Bing, A convex metric for a locally connected continuum,
Bull. Amer. Math. Soc. 55 (1949), 812-819.
MathSciNet
CrossRef
- M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften 319, Springer-Verlag, Berlin,
1999.
MathSciNet
- N. Brodskiy, J. Dydak and A. Mitra, Svarc-Milnor Lemma: a proof by definition, Topology Proc. 31 (2007), 31-36 link.
MathSciNet
- J. W. Cannon, Geometric group theory, Handbook of geometric topology, North-Holland, Amsterdam, 2002, 261-305.
MathSciNet
- J. W. Cannon and G. R. Conner, On the fundamental groups of
one-dimensional spaces, Topology Appl. 153 (2006), 2648-2672.
MathSciNet
CrossRef
- G. R. Conner and J. Lamoreaux, On the existence of universal covering
spaces for metric spaces and subsets of the Euclidean plane, Fund.
Math. 187 (2005), 95-110.
MathSciNet
CrossRef
- G. R. Conner, private communication.
- P. Fabel, Metric spaces with discrete topological fundamental group, Topology Appl. 154 (2007), 635-638.
MathSciNet
CrossRef
- K. Fujiwara and K. Whyte, A note on spaces of asymptotic dimension one, Algebr. Geom. Topol. 7 (2007), 1063-1070, link.
MathSciNet
CrossRef
- P. de la Harpe, Topics in Geometric Group Theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, 2000.
MathSciNet
- M. Kapovich, Lectures on the Geometric Group Theory,
preprint (September 28, 2005).
- J. E. Keesling and Y. B. Rudyak, On fundamental groups of compact Hausdorff spaces, Proc. Amer.
Math. Soc. 135 (2007), 2629-2631.
MathSciNet
CrossRef
- J. Pawlikowski, The fundamental group of a compact metric space, Proc. Amer. Math. Soc. 126 (1998), 3083-3087.
MathSciNet
CrossRef
- A. Przeździecki, Measurable cardinals and fundamental groups of compact spaces, Fund. Math.
192 (2006), 87-92.
MathSciNet
CrossRef
-
J. Roe, Lectures on coarse geometry, University Lecture
Series 31, American Mathematical Society, Providence, 2003.
MathSciNet
- S. Shelah, Can the fundamental (homotopy) group of a space be the rationals?, Proc. Amer. Math. Soc. 103 (1988), 627-632.
MathSciNet
CrossRef
- Ž. Virk, Realizations of countable groups as fundamental groups of compacta, preprint.
Glasnik Matematicki Home Page