Glasnik Matematicki, Vol. 46, No. 2 (2011), 505-511.

AN ALTERNATE PROOF THAT THE FUNDAMENTAL GROUP OF A PEANO CONTINUUM IS FINITELY PRESENTED IF THE GROUP IS COUNTABLE

J. Dydak and Ž. Virk

University of Tennessee, Knoxville, TN 37996, USA
e-mail: dydak@math.utk.edu
e-mail: zigavirk@gmail.com


Abstract.   We give an alternate proof, using coarse geometry, that if the fundamental group of a compact, connected, locally connected metric space is countable, then the fundamental group is finitely presented. This result was first proved by Katsuya Eda and the argument can be found in [5].

2000 Mathematics Subject Classification.   55Q52, 20F65, 14F35.

Key words and phrases.   Coarse geometry, coarse connectivity, finitely presented groups, fundamental group, locally connected compact metric spaces.


Full text (PDF) (free access)

DOI: 10.3336/gm.46.2.18


References:

  1. R. H. Bing, A convex metric for a locally connected continuum, Bull. Amer. Math. Soc. 55 (1949), 812-819.
    MathSciNet     CrossRef

  2. M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften 319, Springer-Verlag, Berlin, 1999.
    MathSciNet    

  3. N. Brodskiy, J. Dydak and A. Mitra, Svarc-Milnor Lemma: a proof by definition, Topology Proc. 31 (2007), 31-36 link.
    MathSciNet    

  4. J. W. Cannon, Geometric group theory, Handbook of geometric topology, North-Holland, Amsterdam, 2002, 261-305.
    MathSciNet    

  5. J. W. Cannon and G. R. Conner, On the fundamental groups of one-dimensional spaces, Topology Appl. 153 (2006), 2648-2672.
    MathSciNet     CrossRef

  6. G. R. Conner and J. Lamoreaux, On the existence of universal covering spaces for metric spaces and subsets of the Euclidean plane, Fund. Math. 187 (2005), 95-110.
    MathSciNet     CrossRef

  7. G. R. Conner, private communication.

  8. P. Fabel, Metric spaces with discrete topological fundamental group, Topology Appl. 154 (2007), 635-638.
    MathSciNet     CrossRef

  9. K. Fujiwara and K. Whyte, A note on spaces of asymptotic dimension one, Algebr. Geom. Topol. 7 (2007), 1063-1070, link.
    MathSciNet     CrossRef

  10. P. de la Harpe, Topics in Geometric Group Theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, 2000.
    MathSciNet    

  11. M. Kapovich, Lectures on the Geometric Group Theory, preprint (September 28, 2005).

  12. J. E. Keesling and Y. B. Rudyak, On fundamental groups of compact Hausdorff spaces, Proc. Amer. Math. Soc. 135 (2007), 2629-2631.
    MathSciNet     CrossRef

  13. J. Pawlikowski, The fundamental group of a compact metric space, Proc. Amer. Math. Soc. 126 (1998), 3083-3087.
    MathSciNet     CrossRef

  14. A. Przeździecki, Measurable cardinals and fundamental groups of compact spaces, Fund. Math. 192 (2006), 87-92.
    MathSciNet     CrossRef

  15. J. Roe, Lectures on coarse geometry, University Lecture Series 31, American Mathematical Society, Providence, 2003.
    MathSciNet    

  16. S. Shelah, Can the fundamental (homotopy) group of a space be the rationals?, Proc. Amer. Math. Soc. 103 (1988), 627-632.
    MathSciNet     CrossRef

  17. Ž. Virk, Realizations of countable groups as fundamental groups of compacta, preprint.

Glasnik Matematicki Home Page