Glasnik Matematicki, Vol. 46, No. 2 (2011), 489-503.

THE COARSE SHAPE PATH CONNECTEDNESS

Nikola Koceić Bilan and Nikica Uglešić

Department of Mathematics, University of Split, Teslina 12/III, 21000 Split, Croatia
e-mail: koceic@pmfst.hr

University of Zadar, Pavlinovićeva bb, 23000 Zadar, Croatia
e-mail: nuglesic@unizd.hr


Abstract.   The bi-pointed coarse shape category of topological spaces is constructed and the notions of a coarse shape path and coarse shape connectedness of a space are naturally introduced. It is proven that the shape path connectedness strictly implies the coarse shape path connectedness even on metrizable compacta. Furthermore, the coarse shape path connectedness on metrizable compacta reduces to ordinary connectedness.

2000 Mathematics Subject Classification.   55P55, 54D05.

Key words and phrases.   Bi-pointed space, ANR, polyhedron, inverse system, resolution, expansion, shape, shape path, coarse shape, weak shape.


Full text (PDF) (free access)

DOI: 10.3336/gm.46.2.17


References:

  1. J. Dydak and J. Segal, Shape theory. An introduction, Lecture Notes in Mathematics 688, Springer, Berlin, 1978.
    MathSciNet    

  2. S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, 1952.
    MathSciNet    

  3. H. Freudenthal, Entwicklungen von Räumen und ihren Gruppen, Compositio Math. 4 (1937), 145-234.
    MathSciNet     CrossRef

  4. J. Keesling and S. Mardešić, A shape fibration with fibers of different shape, Pacific J. Math. 84 (1979), 319-331.
    MathSciNet     CrossRef

  5. N. Koceić Bilan, On some coarse shape invariants, Topology Appl. 157 (2010), 2679-2685.
    MathSciNet     CrossRef

  6. N. Koceić Bilan and N. Uglešić, The coarse shape, Glas. Mat. Ser. III 42(62) (2007), 145-187.
    MathSciNet     CrossRef

  7. J. Krasinkiewicz and P. Minc, Generalized paths and pointed 1-movability, Fund. Math. 104 (1979), 141-153.
    MathSciNet    

  8. S. Mardešić and J. Segal, Shape theory, North-Holland, Amsterdam-New York, 1982.
    MathSciNet    

  9. S. Mardešić and N. Uglešić, A category whose isomorphisms induce an equivalence relation coarser than shape, Topology Appl. 153 (2005), 448-463.
    MathSciNet     CrossRef

  10. E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.
    MathSciNet    

  11. W. Tholen, Pro-categories and multiadjoint functors, Canad. J. Math. 36 (1984), 144-155.
    MathSciNet     CrossRef

  12. N. Uglešić, Stability is a weak shape invariant, Glas. Mat. Ser. III 44(64) (2009), 241-254.
    MathSciNet     CrossRef

  13. N. Uglešić and B. Červar, The concept of a weak shape type, Int. J. Pure Appl. Math. 39 (2007), 363-428.
    MathSciNet    

  14. Š. Ungar, A remark on shape paths and homotopy pro-groups, General topology and its relations to modern analysis and algebra, V (Prague, 1981), Heldermann, Berlin, 1983, 642-647.
    MathSciNet    

Glasnik Matematicki Home Page