Glasnik Matematicki, Vol. 46, No. 2 (2011), 483-487.
CORRECTING TAYLOR'S CELL-LIKE MAP
Katsuro Sakai
Institute of Mathematics,
University of Tsukuba, Tsukuba, 305-8571,
Japan
e-mail: sakaiktr@sakura.cc.tsukuba.ac.jp
Abstract. J. L. Taylor constructed a cell-like map of a compactum X
onto the Hilbert cube IN such that X is not cell-like.
In this note,
we point out a defect in the construction
and show how to fix it.
2000 Mathematics Subject Classification.
54C10, 54C56, 55P40, 57N25.
Key words and phrases. Taylor's cell-like map, Hilbert cube, n-fold suspension.
Full text (PDF) (free access)
DOI: 10.3336/gm.46.2.16
References:
-
J. F. Adams,
On the groups J(X). IV,
Topology 5 (1966), 21-71;
errata,
ibid. 7 (1968), 331.
MathSciNet
CrossRef
MathSciNet
CrossRef
-
C. Bessaga and A. Pełczyński,
Selected topics in infinite-dimensional topology,
Monografie Matematyczne 58,
PWN Polish Scientific Publishers, Warsaw, 1975.
MathSciNet
-
Z. Čerin,
Characterizing global properties in inverse limits,
Pacific J. Math. 112 (1984), 49-68.
MathSciNet
CrossRef
-
O.-H. Keller,
Die Homoiomorphie der kompakten konvexen Mengen im Hilbertschen Raum,
Math. Ann. 105 (1931), 748-758.
MathSciNet
CrossRef
-
S. Mardešić and J. Segal,
Shape theory. The inverse system approach,
North-Holland Mathematical Library 26,
North-Holland Publishing Co., Amsterdam-New York, 1982.
MathSciNet
-
J. van Mill,
Infinite-dimensional topology. Prerequisites and introduction,
North-Holland Mathematical Library 43,
North-Holland Publishing Co., Amsterdam, 1989.
MathSciNet
-
J. L. Taylor,
A counterexample in shape theory,
Bull. Amer. Math. Soc. 81 (1975), 629-632.
MathSciNet
CrossRef
-
H. Toruńczyk,
On CE-images of the Hilbert cube and
characterization of Q-manifolds,
Fund. Math. 106 (1980), 31-40.
MathSciNet
-
J. J. Walsh,
Characterization of Hilbert cube manifolds: an alternate proof,
in: Geometric and algebraic topology,
Banach Center Publ. 18,
PWN Polish Scientific Publishers, Warsaw, 1986, 153-160.
MathSciNet
Glasnik Matematicki Home Page