Glasnik Matematicki, Vol. 46, No. 2 (2011), 455-469.
TRANSLATION SURFACES IN THE GALILEAN SPACE
Željka Milin Šipuš and Blaženka Divjak
Department of Mathematics,
University of Zagreb,
Bijenička cesta 30, 10 000 Zagreb,
Croatia
e-mail: zeljka.milin-sipus@math.hr
Faculty of organization and informatics,
University of Zagreb,
Pavlinska 2, 42 000 Varaždin,
Croatia
e-mail: blazenka.divjak@foi.hr
Abstract. In this paper we
describe, up to a congruence, translation surfaces in the Galilean
space having constant Gaussian and mean curvatures as well as
translation Weingarten surfaces. It turns out that, contrary to the
Euclidean case, there exist translation surfaces with constant
Gaussian curvature K that are not cylindrical surfaces, and
translation surfaces with constant mean curvature H ≠ 0 that are
not ruled.
2000 Mathematics Subject Classification.
53A35, 53A40.
Key words and phrases. Galilean space, translation surface, Weingarten surface.
Full text (PDF) (free access)
DOI: 10.3336/gm.46.2.14
References:
-
F. Dillen, W. Goemans and I. Van de Woestyne, Translation
surfaces of Weingarten type in 3-space, Bull. Transilv. Univ. Brašov Ser. III 1(50) (2008), 109-122.
MathSciNet
-
L. P. Eisenhart, A treatise on the differential geometry of curves
and surfaces, Ginn and company (Cornell University Library), 1909.
MathSciNet
-
M. H. Kim and D. W. Yoon, Weingarten quadric surfaces in a Euclidean
3-space, Turkish J. Math. 35 (2011), 479-485.
CrossRef
-
E. Kreyszig, Differential geometry, Dover Publ.Inc., New York, 1991.
MathSciNet
-
H. Liu, Translation surfaces with constant mean curvature in
3-dimensional spaces, J. Geom. 64 (1999), 141-149.
MathSciNet
CrossRef
-
R. López, Minimal translation surfaces in hyperbolic
space, to appear in Beitrage zur Algebra und Geometrie
(Contributions to Algebra and Geometry).
-
M. Magid and L. Vrancken, Affine translation surfaces with
constant sectional curvature, J. Geom. 68 (2000), 192-199.
MathSciNet
CrossRef
-
M. I. Munteanu and A. I. Nistor, Polynomial translation Weingarten
surfaces in 3-dimensional Euclidean space, in: Proceedings of the VIII
International Colloquuim on Differential Geometry, World Scientific, Hackensack, 2009, 316-320.
MathSciNet
-
Ž. Milin Šipuš, Ruled Weingarten surfaces in the
Galilean space, Period. Math. Hungar. 56 (2008),
213-225.
MathSciNet
CrossRef
-
O. Röschel, Die Geometrie des Galileischen Raumes,
Forschungszentrum Graz, Mathematisch-Statistische Sektion, Graz, 1985.
MathSciNet
-
D. W. Yoon, Polynomial translation surfaces of Weingarten types
in Euclidean 3-space, Cent. Eur. J. Math. 8 (2010), 430-436.
MathSciNet
CrossRef
Glasnik Matematicki Home Page