Glasnik Matematicki, Vol. 46, No. 2 (2011), 439-454.

STUDY OF A QUASISTATIC CONTACT PROBLEM IN VISCOELASTICITY

Arezki Touzaline

Laboratoire de Systèmes Dynamiques, Faculté de Mathématiques, Université des Sciences et de la Technologie Houari Boumediene, BP 32 EL ALIA, Bab Ezzouar, 16111, Algérie
e-mail: ttouzaline@yahoo.fr


Abstract.   We study a quasistatic frictional contact of a viscoelastic body with a foundation. The contact is modelled with a normal compliance condition such that the penetration is restricted with unilateral constraints and the associated version of Coulomb's law of dry friction. We establish the existence of a weak solution if the coefficient of friction is small enough. The proof is based on arguments of time-discretization, compactness and lower semicontinuity.

2000 Mathematics Subject Classification.   47J20, 49J40, 74M10, 74M15.

Key words and phrases.   Viscoelasticity, quasistatic, frictional contact, normal compliance.


Full text (PDF) (free access)

DOI: 10.3336/gm.46.2.13


References:

  1. A. Amassad and C. Fabre, Analysis of a viscoelastic unilateral contact problem involving the Coulomb friction law, J. Optim. Theory Appl. 116 (2003), 465-483.
    MathSciNet     CrossRef

  2. L.-E. Andersson, A quasistatic frictional problem with normal compliance, Nonlinear Anal. 16 (1991), 347-369.
    MathSciNet     CrossRef

  3. L.-E. Andersson, Existence results for quasistatic contact problems with Coulomb friction, Appl. Math. Optim. 42 (2000), 169-202.
    MathSciNet     CrossRef

  4. M. Cocu, E. Pratt and M. Raous, Formulation and approximation of quasistatic frictional contact, Internat. J. Engrg. Sci. 34 (1996), 783-798.
    MathSciNet     CrossRef

  5. M. Cocu and R. Rocca, Existence results for unilateral quasistatic contact problems with friction and adhesion, Mathematical modelling and numerical analysis 34 (2000), 981-1001.
    MathSciNet     CrossRef

  6. G. Duvaut and J. L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972.
    MathSciNet    

  7. W. Han and M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity, Studies in advanced Mathematics 30, AMS and International Press, 2002.
    MathSciNet    

  8. J. Jarusĕk and M. Sofonea, On the solvability of dynamic elastic-visco-plastic contact problems, ZAMM Z. Angew. Math. Mech. 88 (2008), 3-22.
    MathSciNet     CrossRef

  9. N. Kikuchi and T. J. Oden, Contact problems in elasticity, SIAM, Philadelphia, Pennsylvania, 1988.
    MathSciNet    

  10. A. Klarbring, A. Mikelic and M. Shillor, A global existence result for the quasistatic frictional contact problem with normal compliance, Internat. Ser. Numer. Math. 101 (1991), 85-111.
    MathSciNet    

  11. R. Rocca, Existence of a solution for a quasistatic problem of unilateral contact with local friction, C. R. Acad. Sci Paris. Sér. I Math 328 (1999), 1253-1258.
    MathSciNet     CrossRef

  12. M. Rochdi, M. Schillor and M. Sofonea, Quasistatic viscoelastic contact with normal compliance and friction, J. Elasticity 51 (1998), 105-126.
    MathSciNet     CrossRef

  13. M. Sofonea, W. Han and M. Shillor, Analysis and approximations of contact problems with adhesion or damage, Pure and Applied Mathematics 276, Chapman & Hall/CRC Press, Boca Raton, Florida, 2006.
    MathSciNet    

  14. A. Touzaline, A quasistatic frictional contact problem with normal compliance and finite penetration for elastic matrials, Glas. Mat. Ser. III 45(65) (2010), 109-124.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page