Glasnik Matematicki, Vol. 46, No. 2 (2011), 439-454.
STUDY OF A QUASISTATIC CONTACT PROBLEM IN VISCOELASTICITY
Arezki Touzaline
Laboratoire de Systèmes Dynamiques,
Faculté de Mathématiques,
Université des Sciences et de la Technologie Houari Boumediene,
BP 32 EL ALIA, Bab Ezzouar, 16111,
Algérie
e-mail: ttouzaline@yahoo.fr
Abstract. We study a quasistatic frictional contact of a viscoelastic body with a
foundation.
The contact is modelled with a normal compliance condition such
that the penetration is restricted with unilateral constraints and the
associated version of Coulomb's law of dry friction. We establish the
existence of a weak solution if the coefficient of friction is small enough.
The proof is based on arguments of time-discretization, compactness and lower
semicontinuity.
2000 Mathematics Subject Classification.
47J20, 49J40, 74M10, 74M15.
Key words and phrases. Viscoelasticity, quasistatic, frictional
contact, normal compliance.
Full text (PDF) (free access)
DOI: 10.3336/gm.46.2.13
References:
- A. Amassad and C. Fabre, Analysis of a viscoelastic
unilateral contact problem involving the Coulomb friction
law, J. Optim. Theory Appl. 116 (2003), 465-483.
MathSciNet
CrossRef
- L.-E. Andersson, A quasistatic frictional problem with normal
compliance, Nonlinear Anal. 16 (1991), 347-369.
MathSciNet
CrossRef
- L.-E. Andersson, Existence results for quasistatic contact
problems with Coulomb friction, Appl. Math. Optim. 42 (2000), 169-202.
MathSciNet
CrossRef
- M. Cocu, E. Pratt and M. Raous, Formulation and approximation
of quasistatic frictional contact, Internat. J. Engrg. Sci. 34 (1996),
783-798.
MathSciNet
CrossRef
- M. Cocu and R. Rocca, Existence results for unilateral quasistatic
contact problems with friction and adhesion, Mathematical modelling
and numerical analysis 34 (2000), 981-1001.
MathSciNet
CrossRef
- G. Duvaut and J. L. Lions, Les inéquations en mécanique
et en physique, Dunod, Paris, 1972.
MathSciNet
- W. Han and M. Sofonea, Quasistatic contact problems in
viscoelasticity and viscoplasticity, Studies in advanced
Mathematics 30, AMS and
International Press, 2002.
MathSciNet
- J. Jarusĕk and M. Sofonea, On the solvability
of dynamic elastic-visco-plastic contact problems, ZAMM Z. Angew. Math. Mech. 88 (2008), 3-22.
MathSciNet
CrossRef
- N. Kikuchi and T. J. Oden, Contact problems in elasticity, SIAM, Philadelphia, Pennsylvania, 1988.
MathSciNet
- A. Klarbring, A. Mikelic and M. Shillor, A global existence result for the quasistatic frictional contact problem with normal compliance, Internat. Ser. Numer. Math. 101 (1991), 85-111.
MathSciNet
- R. Rocca, Existence of a solution for a quasistatic
problem of
unilateral contact with local friction, C. R. Acad. Sci Paris.
Sér. I Math 328 (1999), 1253-1258.
MathSciNet
CrossRef
- M. Rochdi, M. Schillor and M. Sofonea, Quasistatic viscoelastic
contact with normal compliance and friction, J. Elasticity 51 (1998),
105-126.
MathSciNet
CrossRef
- M. Sofonea, W. Han and M. Shillor, Analysis and approximations
of contact problems with adhesion or damage, Pure and
Applied
Mathematics 276, Chapman & Hall/CRC Press, Boca Raton,
Florida, 2006.
MathSciNet
- A. Touzaline, A quasistatic frictional contact problem with normal
compliance and finite penetration for elastic matrials, Glas. Mat. Ser. III 45(65) (2010), 109-124.
MathSciNet
CrossRef
Glasnik Matematicki Home Page