Glasnik Matematicki, Vol. 46, No.1 (2011), 249-268.
A 2-EQUIVALENT KELLEY CONTINUUM
Carlos Islas
Department of Mathematics,
Faculty of Sciences,
Universidad Autónoma de la Ciudad de México,
04510 México DF,
México
e-mail: islas@matem.unam.mx, carlos.islas@uacm.edu.mx
Abstract. The main purpose of this paper is to construct a 2-equivalent
compactification X of a ray whose remainder is homeomorphic to X and
such that X is a Kelley Continuum. In order to construct this example, we
prove a theorem which gives conditions for an inverse limit of arcs X to
be the compactification of a ray and X is a Kelley continuum.
2000 Mathematics Subject Classification.
54F15, 54F50.
Key words and phrases. 2-equivalent continuum, Kelley Continuum, inverse limits.
Full text (PDF) (free access)
DOI: 10.3336/gm.46.1.18
References:
- R. A. Beane and W. J. Charatonik, Kelley remainders
of [ 0, ∞), Topology Proc. 32 (2008), 101-114.
MathSciNet
- R. Bennett, On inverse limit sequences, Master's Thesis,
University of Tennesse, 1962.
- J. J. Charatonik and W. J. Charatonik, Fans with
the property of Kelley, Topology Appl. 29 (1988), 73-78.
MathSciNet
CrossRef
- W. J. Charatonik, Inverse limits of smooth continua,
Comment. Math. Univ. Carolin. 23 (1982), 183-191.
MathSciNet
- H. Cook, Tree-likeness of hereditarily equivalent continua,
Fund. Math. 68 (1970), 203-205.
MathSciNet
- G. W. Henderson, Proof that every compact decomposable
continuum which is topologically equivalent to each of its nondegenerate
subcontinua is an arc, Ann. of Math. (2) 72 (1960), 421-428.
MathSciNet
CrossRef
- W. T. Ingram, Periodicity and indecomposability, Proc.
Amer. Math. Soc. 123 (1995), 1907-1916.
MathSciNet
CrossRef
- W. T. Ingram, Families of inverse limits on [0,1], Topology Proc. 27 (2003), 189-201.
MathSciNet
- S. Macías, Topics on continua, Chapman & Hall/CRC, Boca Raton,
2005.
MathSciNet
- T. Mackowiak, Singular arc-like continua, Dissertationes
Math. 257 (1986), 40 pp.
MathSciNet
- W. S. Mahavier, Continua with only two topologically
different subcontinua, Topology Appl. 94 (1999), 243-252.
MathSciNet
CrossRef
- S. Mazurkiewicz, Problem 14, Fund. Math. 2 (1921), p. 286.
- E. E. Moise, An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua, Trans. Amer. Math.
Soc. 63 (1948), 581-594.
MathSciNet
CrossRef
- S. B. Nadler Jr., Continuum theory. An introduction, Marcel Deker, Inc., New York, 1992.
MathSciNet
- S. B. Nadler Jr., Hyperspaces of sets. A text with
research questions. Aportaciones Matemáticas, Serie Textos 33,
Sociedad Matemática Mexicana, Mexico, 2006.
MathSciNet
- G. T. Whyburn, A continuum every subcontinuum of which
separates the plane, Amer. J. Math. 52 (1930), 319-330.
MathSciNet
CrossRef
Glasnik Matematicki Home Page