Glasnik Matematicki, Vol. 46, No.1 (2011), 233-247.
APPROXIMATING COMMON SOLUTIONS OF VARIATIONAL INEQUALITIES BY
ITERATIVE ALGORITHMS WITH APPLICATIONS
Xiaolong Qin, Sun Young Cho and Yeol Je Cho
School of Mathematics and Information Sciences, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
e-mail: qxlxajh@163.com
Department of Mathematics, Gyeongsang
National University, Chinju 660-701, Korea
e-mail: ooly61@yahoo.co.kr
Department of Mathematics Education and RINS, Gyeongsang
National University, Chinju 660-701, Korea
e-mail: yjcho@gnu.ac.kr
Abstract. In this paper, we introduce an iterative scheme for a
general variational inequality. Strong convergence theorems
of common solutions of two variational inequalities are established
in a uniformly convex and 2-uniformly smooth Banach space. As
applications, we, still in Banach spaces, consider the convex
feasibility problem.
2000 Mathematics Subject Classification.
47H05, 47H09, 47J25.
Key words and phrases. Iterative algorithm, variational inequality,
inverse-strongly accretive mapping, sunny nonexpansive retraction.
Full text (PDF) (free access)
DOI: 10.3336/gm.46.1.17
References:
- K. Aoyama, H. Iiduka and W. Takahashi, Weak
convergence of an iterative sequence for accretive operators in
Banach spaces, Fixed Point Theory Appl. 2006 (2006), Art.
ID 35390.
MathSciNet
CrossRef
- F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math.
Anal. Appl. 20 (1967), 197-228.
MathSciNet
CrossRef
- F. E. Browder, Fixed point theorems for noncompact
mappings in Hilbert spaces, Proc. Nat. Acad. Sci. U.S.A. 53
(1965), 1272-1276.
MathSciNet
CrossRef
- R. E. Bruck, Properties of fixed-point sets of
nonexpansive mappings in Banach spaces, Tras. Amer. Math.
Soc. 179 (1973), 251-262.
MathSciNet
CrossRef
- Y. J. Cho, Y. Yao and H. Zhou, Strong convergence of an iterative algorithm for accretive
operators in Banach spaces, J. Comput. Appl. Anal. 10
(2008), 113-125.
MathSciNet
- L. C. Ceng, C. Y. Wang and J. C. Yao, Strong convergence theorems by a relaxed extragradient
method for a general system of variational inequalities, Math.
Meth. Oper. Res. 67 (2008), 375-390.
MathSciNet
CrossRef
- P. L. Combettes, The convex feasibility problem, in: Image recovery, Advances in Imaging and
Electron Physics, P. Hawkes, Ed., vol. 95, pp. 155-270, Academic
Press, Orlando, Fla, USA, 1996.
- Y. Censor and S. A. Zenios, Parallel Optimization. Theory, Algorithms, and Applications,
Numerical Mathematics and Scientific Computation, Oxford University
Press, New York, NY, USA, 1997.
MathSciNet
- Y. Hao, Strong convergence of an iterative method for inverse strongly accretive
operators, J. Inequal. Appl. 2008, Art. ID 420989.
MathSciNet
CrossRef
- H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive
mappings and inverse-strongly monotone mappings, Nonlinear
Anal. 61 (2005), 341-350.
MathSciNet
CrossRef
- S. Kitahara and W. Takahashi, Image recovery by convex combinations of sunny nonexpansive
retractions, Topol. Meth. Nonlinear Anal. 2 (1993),
333-342.
MathSciNet
- T. Kotzer, N. Cohen and J. Shamir, Images to ration by a novel method of parallel
projection onto constraint sets, Opt. Lett. 20 (1995),
1172-1174.
CrossRef
- X. Qin and Y. Su, Approximation of a zero point of accretive operator in Banach
spaces, J. Math. Anal. Appl. 329 (2007), 415-424.
MathSciNet
CrossRef
- X. Qin, Y. Su and M. Shang, Strong convergence of the composite Halpern
iteration, J. Math. Anal. Appl. 339 (2008), 996-1002.
MathSciNet
CrossRef
- S. Reich, Strong convergence theorems for resolvents of
accretive operators in Banach spaces, J. Math. Anal.
Appl. 75 (1980), 287-292.
MathSciNet
CrossRef
- S. Reich, Asymptotic behavior of contractions in Banach spaces, J. Math. Anal. Appl. 44
(1973), 57-70.
MathSciNet
CrossRef
- T. Suzuki, Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochne
integrals, J. Math. Anal. Appl. 305 (2005), 227-239.
MathSciNet
CrossRef
- M. I. Sezan and H. Stark, Application of convex projection theory to image recovery in tomograph
and related areas, in Image Recovery: Theory and Application, H.
Stark, Ed., pp. 155-270 Academic Press, Orlando, Fla, USA, 1987.
- W. Takahashi, Nonlinear Functional Analysis,
Yokohama Publishers, Yokohama, 2000.
MathSciNet
- H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16
(1991), 1127-1138.
MathSciNet
CrossRef
- H. K. Xu, Iterative algorithms for nonlinear
operators, J. London Math. Soc. 66 (2002), 240-256.
MathSciNet
CrossRef
- Y. Yao and J. C. Yao, On modified iterative method for nonexpansive mappings and monotone
mappings, Appl. Math. Comput. 186 (2007), 1551-1558.
MathSciNet
CrossRef
Glasnik Matematicki Home Page