Glasnik Matematicki, Vol. 46, No.1 (2011), 189-213.
SCALING SETS AND ORTHONORMAL WAVELETS WITH DILATIONS INDUCED BY EXPANDING MATRICES
Damir Bakić and Edward N. Wilson
Department of Mathematics, University of Zagreb, Zagreb, Croatia
e-mail: bakic@math.hr
Washington University in St. Louis, St. Louis, USA
Abstract. The paper studies orthonormal wavelets in
L2(Rn) with dilations induced by expanding integer matrices
of arbitrary determinant. We provide a method for construction of all
scaling sets and, hence, of all orthonormal MSF wavelets with the
additional property that the core space of the underlying
multiresolution structure is singly generated. Several examples on
the real line and in R2 are included. We also prove that all
MSF orthonormal wavelets whose dimension function is essentially
bounded by 1 are obtained by our construction method. Finally, we derive a description
of all wavelets (not necessarily MSF ones) that arise from a single scaling function in terms
of the underlying multiresolution structure.
2000 Mathematics Subject Classification.
42A99, 42C15.
Key words and phrases. Expanding matrix, orthonormal
wavelet, scaling set, multiresolution analysis.
Full text (PDF) (free access)
DOI: 10.3336/gm.46.1.15
References:
- L. Baggett, H. Medina and K. Merrill, Generalized multiresolution analyses, and a construction procedure
for all wavelet sets in Rn, J. Fourier Anal. Appl. 5 (1999), 563-573.
MathSciNet
CrossRef
- D. Bakić, Semi-orthogonal Parseval frame
wavelets and generalized multiresolution analyses, Appl. Comput. Harmon. Anal. 21 (2006), 281-304.
MathSciNet
CrossRef
- D. Bakić, I. Krishtal and E .N. Wilson, Parseval frame wavelets with En(2)-dilations, Appl. Comput. Harmon. Anal. 19 (2005), 386-431.
MathSciNet
CrossRef
- J. J. Benedetto and S. Li, The theory of multiresolution analysis frames and
applications to filter banks, Appl. Comput. Harmon. Anal.
5 (1998), 389-427.
MathSciNet
CrossRef
- M. Bownik, The structure of shift-invariant subspaces of L2(Rn),
J. Funct. Anal. 112 (2000), 282-309.
MathSciNet
CrossRef
- M. Bownik and Z. Rzeszotnik, On the existence of
multiresolution analysis for framelets, preprint, 2004.
- M. Bownik, Z. Rzeszotnik and D. Speegle, A
characterization of dimension function of orthonormal wavelets,
Appl. Comput. Harmon. Anal. 10 (2001), 71-92.
MathSciNet
CrossRef
- X. Dai, Y. Diao, Q. Gu and D. Han, Wavelets with frame multiresolution analysis, J. Fourier Anal. Appl. 9 (2003), 39-48.
MathSciNet
CrossRef
- X. Dai and D. Larson, Wandering vectors for unitary
systems and orthogonal wavelets, Mem. Amer. Math. Soc. 134 (1998).
MathSciNet
- X. Dai, D. Larson and D. Speegle, Wavelet sets in Rn, J. Fourier Anal. Appl. 3 (1997), 451-456.
MathSciNet
CrossRef
- X. Dai, D. Larson and D. Speegle, Wavelet sets in Rn, II, Contemp. Math. 216 (1998), 15-40.
MathSciNet
- Q. Gu and D. Han, On multiresolution analysis wavelets in Rn,
J. Fourier Anal. Appl. 6 (2000), 437-447.
MathSciNet
CrossRef
- E. Hernández and G. Weiss, A first course on
wavelets, CRC Press, Boca Raton, 1996.
MathSciNet
CrossRef
- M. Papadakis, On the dimension function of orthonormal wavelets,
Proc. Amer. Math. Soc. 128 (2000), 2043-2049.
MathSciNet
CrossRef
- M. Papadakis, H. Šikić and G. Weiss, The characterization of low pass filters and some basic properties of wavelets, scaling
functions and related concepts, J. Fourier Anal. Appl. 5 (1999), 496-521.
MathSciNet
CrossRef
- P. Soardi and D. Weiland, Single wavelets in n dimensions, J. Fourier Anal. Appl. 4 (1998), 299-315.
MathSciNet
CrossRef
Glasnik Matematicki Home Page