Glasnik Matematicki, Vol. 46, No.1 (2011), 149-165.
EXISTENCE RESULTS ON POSITIVE PERIODIC SOLUTIONS FOR IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS
Yuji Liu
Department of Mathematics, Guangdong University of Business Studies, Guangzhou 510320, P. R. China
e-mail: liuyuji888@sohu.com
Abstract. A class of first order nonlinear functional differential equations with impulses
is studied. It is shown that there exist one or two positive T-periodic solutions under certain
assumptions,
and no positive
T-periodic solution under some other assumptions. Applications to some impulsive biological
models and an example, which can not be covered by known results, are given to illustrate the main results.
2000 Mathematics Subject Classification.
34B10, 34B15, 34K15, 34K10, 34C25, 92D25.
Key words and phrases. Impulse, first order functional differential
equation, impulsive biological model, positive T-periodic
solution, fixed point theorem.
Full text (PDF) (free access)
DOI: 10.3336/gm.46.1.13
References:
- B. Ahmad and J. J. Nieto, Existence and approximation of solutions for a class of nonlinear
impulsive functional differential equations with anti-periodic
boundary conditions, Nonlinear Anal. 69 (2008), 3291-3298.
MathSciNet
CrossRef
- S. Cheng and G. Zhang, Existence of positive periodic solutions for
non-autonomous functional differential equations, Electronic J.
Differential Equations 59 (2001), 1-8.
MathSciNet
- J. Chu, Impulsive periodic solutions of first-order
singular differential equations, Bull. Lond. Math. Soc. 40
(2008), 143-150.
MathSciNet
CrossRef
- P. Georgescu, H. Zhang and L. Chen, Bifurcation of nontrivial periodic solutions for an impulsively
controlled pest management model, Appl. Math. Comput. 202
(2008), 675-687.
MathSciNet
CrossRef
- W. Gurney, S. Blythe and R. Nisbet, Nicholson's
Blowflies revised, Nature 287 (1980), 17-21.
CrossRef
- J. Hale and S. Lunel, Introduction to functional
differential equations, New York, Berlin, Springer-Verlag,
1993.
MathSciNet
- Y. Kuang and H. Smith, Slowly oscillating periodic
solutions of nonautonomous state-dependent delay equations, Nonlinear
Anal. 19 (1992), 855-872.
MathSciNet
CrossRef
- V. Lakshmikantham, D. Bainov and P. Simeonov, Theory of
impulsive differential equations. Singapore, World Scientist, 1989.
MathSciNet
- E. K. Lee and Y-H. Lee, Multiple positive solutions of singular two point boundary value
problems for second order impulsive differential equations, Appl.
Math. Comput., 158 (2004), 745-759.
MathSciNet
CrossRef
- J. Li, J. J. Nieto and J. Shen, Impulsive periodic boundary value problems of first-order
differential equations, J. Math. Anal. Appl. 325 (2007), 226-236.
MathSciNet
CrossRef
- J. Li and J. Shen, Existence of positive periodic solutions to
a class of functional differential equations with impulses, Math.
Appl. (Wuhan) 17 (2004), 456-463.
MathSciNet
- W. Li and H. Huo. Global attractivity of positive periodic
solutions for an impulsive delay periodic model of respiratory
dynamics, J. Comput. Appl. Math., 174 (2005), 227-238.
MathSciNet
CrossRef
- W. Li and Z. Wang, Existence and global attractivity of positive periodic solutions of a survival model of red blood cells, Comput. Appl. Math. 50 (2005), 41-47.
MathSciNet
CrossRef
- X. Li, X. Lin, D. Jiang and X. Zhang, Existence and
multiplicity of positive periodic solutions to functional
differential equations with impulse effects, Nonlinear Anal. 62
(2005), 683-701.
MathSciNet
CrossRef
- X. Li, X. Zhang and D. Jiang, A new existence theory for
positive periodic solutions to functional differential equations
with impulse effects, Comput. Math. Appl. 51 (2006),
1761-1772.
MathSciNet
CrossRef
- Y. Li, X. Fan and L. Zhao, Positive periodic solutions of functional differential equations
with impulses and a parameter, Comput. Math. Appl. 56 (2008),
2556-2560.
MathSciNet
CrossRef
- G. Liu, J. Yan and F. Zhang, Existence and global
attractivity of unique positive periodic solution for a model of
hematopoiesis, J. Math. Anal. Appl. 334 (2007), 157-171.
MathSciNet
CrossRef
- S. Liu, Y. Pei, C. Li and L. Chen, Three kinds of TVS in a SIR epidemic model with saturated
infectious force and vertical transmission, Appl. Math. Model. 33 (2009), 1923-1932.
MathSciNet
CrossRef
- Y. Liu, Positive solutions of periodic boundary value problems for
nonlinear first-order impulsive differential equations, Nonlinear Anal. 70 (2009) , 2106-2122.
MathSciNet
CrossRef
- Y. Liu and W. Ge, Positive periodic solutions of state-dependent
functional differential equations, Appl. Anal. 84 (2005),
1079-1094.
MathSciNet
CrossRef
- Y. Liu, J. Xia and W. Ge, Positive periodic solutions of impulsive
functional differential equations, J. Appl. Math. Comput. 19
(2005), 261-280.
MathSciNet
CrossRef
- Y. Liu and B. Zhang, Global attractivity of a class of delay
differential equations with impulses, ANZIAM J. 45 (2003),
271-284.
MathSciNet
CrossRef
- Z. Luo and Z. Jing, Periodic boundary value problem for first-order impulsive
functional differential equations, Comput. Math. Appl. 55
(2008), 2094-2107.
MathSciNet
- Z. Luo and J. J. Nieto, New results for the periodic boundary value problem for impulsive
integro-differential equations, Nonlinear Anal. 70 (2009),
2248-2260
MathSciNet
CrossRef
- L. Nie, Z. Teng, L. Hu and J. Peng, Existence and
stability of periodic solution of a Lotka-Volterra predator-prey
model with state dependent impulsive effects, J. Comput. Appl. Math. 224 (2009), 544-555.
MathSciNet
CrossRef
- J. J. Nieto and R. Rodriguez-Lopez, Comparison results and approximation of solutions for impulsive
functional differential equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 15 (2008), 169-215.
MathSciNet
- J. J. Nieto and R. Rodriguez-Lopez,
Boundary value problems for a class of impulsive functional
equations, Comput. Math. Appl. 55 (2008), 2715-2731.
MathSciNet
CrossRef
- E. Pielou, Mathematics ecology, New York,
Wiley-Inter-science, 1977.
MathSciNet
- D. Qian and X. Li, Periodic solutions for ordinary differential
equations with sublinear impulsive effects, J. Math. Anal. Appl.
303 (2005), 288-303.
MathSciNet
CrossRef
- G. Rost, On the global attractivity controversy for a delay
model of hematopoiesis, Appl. Math. Comput. 190 (2007),
846-850.
MathSciNet
CrossRef
- S. Saker and S. Agarwal, Oscillatory and global
attractivity in a periodic Nicholson's blowflies model, Math.
Comput. Modelling 35 (2002), 719-731.
MathSciNet
CrossRef
- J. Shen and J. Li, Existence and global attractivity of positive periodic solutions for
impulsive predator-prey model with dispersion and time delays,
Nonlinear Anal. Real World Appl. 10 (2009), 227-243.
MathSciNet
CrossRef
- S. Tang and L. Chen, Global attractivity in a "food-limited"
population model with impulsive effects, J. Math. Anal. Appl. 292 (2004), 211-221.
MathSciNet
CrossRef
- H. Wang, Positive periodic solutions of functional
differential equations, J. Differential Equations 202
(2004), 354-366.
MathSciNet
CrossRef
- M. Wazewska-Czyzewska and A. Lasota, Mathematical problems of the dynamics of a system of red blood cells, Mat. Stos. (3) 6 (1976), 23-40.
MathSciNet
- P. Weng and M. Liang, The existence and behavior of periodic
solutions of a Hematopoiesis model, Math. Appl. (Wuhan) 8
(1995), 434-439.
MathSciNet
- J. Yan, Existence of positive periodic solutions of
impulsive functional differential equations with two parameters, J.
Math. Anal. Appl. 327 (2007), 854-868.
MathSciNet
CrossRef
- J. Yan, A. Zhao and J. J. Nieto,
Existence and global attractivity of positive periodic solution
of periodic single-species impulsive Lotka-Volterra systems, Math.
Comput. Model. 40 (2004), 509-518.
MathSciNet
CrossRef
- G. Zhang and S. Cheng, Positive periodic solutions of nonautonomous functional differential equations
depend on a parameter, Abstract Anal. Appl. 7 (2002),
279-286.
MathSciNet
CrossRef
- N. Zhang, B. Dai and X. Qian, Periodic solutions for a class of higher-dimension functional
differential equations with impulses, Nonlinear Anal. 68
(2008), 629-638.
MathSciNet
CrossRef
- X. Zhang, X. Li, D. Jiang and K. Wang, Multiplicity Positive Solutions to Periodic Problems for
First-Order Impulsive Differential Equations, Comput. Math. Appl.
52 (2006), 953-966.
MathSciNet
CrossRef
- X. Zhang, J. Yan and A. Zhao, Existence of positive periodic solutions for an impulsive
differential equation, Nonlinear Anal. 68 (2008), 3209-3216.
MathSciNet
CrossRef
Glasnik Matematicki Home Page