Glasnik Matematicki, Vol. 46, No.1 (2011), 121-148.
RANK ONE REDUCIBILITY FOR UNITARY GROUPS
Marcela Hanzer
Department of Mathematics,
University of Zagreb,
10000 Zagreb,
Croatia
e-mail: hanmar@math.hr
Abstract. Let (G,G') denote a dual reductive pair consisting of two unitary groups over a nonarchimedean local field of characteristic zero. We relate the reducibility of the parabolically induced representations of these two groups if the inducing data is cuspidal and related to each other by theta correspondence. We calculate theta lifts of the irreducible subquotients of these parabolically induced representations. To obtain these results, we explicitly calculate filtration of Jacquet modules of the appropriate Weil representation (as Kudla did for the orthogonal-symplectic dual pairs), but keeping in mind the explicit splittings of covers of these two unitary groups, also obtained by Kudla.
2000 Mathematics Subject Classification.
22E35, 22E50, 11F70.
Key words and phrases. Unitary groups over non-archimedean fields,
reducibility of parabolic induction, theta correspondence.
Full text (PDF) (free access)
DOI: 10.3336/gm.46.1.12
References:
-
A.-M. Aubert, Dualité dans le groupe de Grothendieck de la
catégorie des représentations lisses de longueur finie d'un groupe
réductif p-adique, Trans. Amer. Math. Soc. 347 (1995),
2179-2189.
MathSciNet
CrossRef
-
J. Bernstein, Draft of: Representations of p-adic groups.
http://www.math.tau.ac.il/~bernstei/Publication_list/publication_texts/Bernst_Lecture_p-adic_repr.pdf
-
J. Bernstein, Second adjointness
for representations of p-adic reductive groups, preprint.
-
C. J. Bushnell, Representations of reductive p-adic groups:
localization of Hecke algebras and applications, J. London Math. Soc. (2)
63 (2001), 364-386.
MathSciNet
CrossRef
-
W. Casselman, Introduction to the theory of admissible
representations of p-adic reductive groups, preprint.
-
M. Hanzer and G. Muić, Rank one reducibility for metapletic
groups via theta correspondence, Canad. J. Math. 63 (2011), 591-615.
CrossRef
-
M. Hanzer and G. Muić, Parabolic induction
and Jacquet functors for metaplectic groups, J. Algebra 323 (2010),
241-260.
MathSciNet
CrossRef
-
M. Harris, S. S. Kudla, and W. J. Sweet, Theta dichotomy for unitary
groups, J. Amer. Math. Soc. 9 (1996), 941-1004.
MathSciNet
CrossRef
-
S. S. Kudla, Notes on the local theta correspondence (lectures at the
European School in Group Theory), 1996.
http://www.math.toronto.edu/~skudla/castle.pdf.
-
S. S. Kudla, On the local theta-correspondence, Invent. Math. 83
(1986), 229-255.
MathSciNet
CrossRef
-
S. S. Kudla, Splitting
metaplectic covers of dual reductive pairs, Israel J. Math. 87 (1994),
361-401.
MathSciNet
CrossRef
-
C. Moeglin and M. Tadić, Construction of discrete series for
classical p-adic groups, J. Amer. Math. Soc. 15 (2002), 715-786
(electronic).
MathSciNet
CrossRef
-
C. Moeglin, M.-F. Vignéras, and J.-L. Waldspurger, Correspondances de Howe sur un corps p-adique, Lecture
Notes in Mathematics 1291, Springer-Verlag, Berlin, 1987.
MathSciNet
-
G. Muić, On the structure of the full lift for the Howe
correspondence of (Sp(n),O(V)) for rank-one reducibilities,
Canad. Math. Bull. 49 (2006), 578-591.
MathSciNet
CrossRef
-
P. Perrin, Représentations de Schrödinger, indice de Maslov
et groupe metaplectique, in: Noncommutative harmonic analysis and Lie
groups (Marseille, 1980), Lecture Notes in Math. 880, Springer,
Berlin, 1981, 370-407.
MathSciNet
-
R. Ranga Rao, On some explicit formulas in the theory of Weil
representation, Pacific J. Math. 157 (1993), 335-371.
MathSciNet
CrossRef
-
M. Tadić, Structure arising from induction and Jacquet modules
of representations of classical p-adic groups, J. Algebra 177 (1995),
1-33.
MathSciNet
CrossRef
-
A. Weil, Sur certains groupes d'opérateurs unitaires, Acta Math.
111 (1964), 143-211.
MathSciNet
CrossRef
-
A. V. Zelevinsky, Induced representations of reductive p-adic
groups. II. On irreducible representations of GL(n), Ann. Sci. École
Norm. Sup. (4) 13 (1980), 165-210.
MathSciNet
CrossRef
Glasnik Matematicki Home Page