Glasnik Matematicki, Vol. 46, No.1 (2011), 49-70.
CHARACTERS OF FEIGIN-STOYANOVSKY'S TYPE SUBSPACES OF LEVEL ONE MODULES FOR AFFINE LIE ALGEBRAS OF TYPES Al(1) AND D4(1)
Goran Trupčević
Department of Mathematics,
University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia
e-mail: gtrup@math.hr
Abstract. We use combinatorial description of bases of Feigin-Stoyanovsky's
type subspaces of standard modules of level 1 for affine Lie
algebras of types Al(1) and D4(1) to obtain character
formulas. These descriptions naturally lead to systems of recurrence
relations for which we also find solutions.
2000 Mathematics Subject Classification.
17B67, 05A19.
Key words and phrases. Affine Lie algebras, principal subspaces, character formulas.
Full text (PDF) (free access)
DOI: 10.3336/gm.46.1.08
References:
- I. Baranović, Combinatorial bases of Feigin-Stoyanovsky's type subspaces of level 2
standard modules for D4(1), math.QA/0903.0739.
- I. Baranović, in preparation.
- C. Calinescu, Intertwining vertex operators and certain representations of sl(n),
Commun. Contemp. Math. 10 (2008), 47-79.
MathSciNet
CrossRef
- C. Calinescu, Principal subspaces of higher-level standard sl(3)-modules,
J. Pure Appl. Algebra 210 (2007), 559-575.
MathSciNet
CrossRef
- C. Calinescu, J. Lepowsky and A. Milas, Vertex-algebraic structure of the principal subspaces of
certain A1(1)-modules. I. Level one case, Int. J. Math. 19 (2008), 71-92.
MathSciNet
CrossRef
- C. Calinescu, J. Lepowsky and A. Milas, Vertex-algebraic structure of the principal subspaces of
certain A1(1)-modules. II. Higher level case, J. Pure Appl. Algebra 212 (2008), 1928-1950.
MathSciNet
CrossRef
- C. Calinescu, J. Lepowsky and A. Milas, Vertex-algebraic structure of the principal subspaces of
level one modules for the untwisted affine Lie algebras of types A, D, E, J. Algebra 323 (2010), 167-192.
MathSciNet
CrossRef
- S. Capparelli, J. Lepowsky and A. Milas,
The Rogers-Ramanujan recursion and intertwining operators,
Commun. Contemp. Math. 5 (2003), 947-966.
MathSciNet
CrossRef
- S. Capparelli, J. Lepowsky and A. Milas,
The Rogers-Selberg recursions, the Gordon-Andrews identities and intertwining operators, Ramanujan J. 12 (2006), 379-397.
MathSciNet
CrossRef
- B. Feigin, M. Jimbo, S. Loktev, T. Miwa and E. Mukhin, Bosonic formulas
for (k,l)-admissible partitions, Ramanujan J. 7 (2003), 485-517.; Addendum to
`Bosonic formulas for (k,l)-admissible partitions', Ramanujan J. 7 (2003), 519-530.
MathSciNet
CrossRef
MathSciNet
CrossRef
- B. Feigin, M. Jimbo, T. Miwa, E. Mukhin and Y. Takeyama, Fermionic formulas
for (k,3)-admissible configurations, Publ. Res. Inst. Math. Sci. 40 (2004), 125-162.
MathSciNet
CrossRef
- B. Feigin, M. Jimbo, T. Miwa, E. Mukhin and Y. Takeyama, Particle content of
the (k,3)-configurations, Publ. Res. Inst. Math. Sci. 40 (2004), 163-220.
MathSciNet
CrossRef
- A. V. Stoyanovsky and B. L. Feigin, Functional models of the representations of
current algebras, and semi-infinite Schubert cells, (Russian) Funktsional. Anal. i Prilozhen. 28 (1994), 68-90, 96;
translation in Funct. Anal. Appl. 28 (1994), 55-72.
MathSciNet
CrossRef
- G. Georgiev,
Combinatorial constructions of modules for
infinite-dimensional Lie algebras. I. Principal subspace, J. Pure
Appl. Algebra 112 (1996), 247-286.
MathSciNet
CrossRef
- M. Jerković,
Recurrence relations for characters of affine
Lie algebra Al(1), J. Pure Appl. Algebra 213 (2009),
913-926.
MathSciNet
CrossRef
- M. Jerković, Character formulas for Feigin-Stoyanovsky's type
subspaces of standard sl(3, C)~-modules,
arXiv:1105.2927v1 [math.QA].
- M. Jerković, Recurrence relations for characters of affine Lie
algebra Al(1), PhD thesis, University of Zagreb, 2007.
-
V. G. Kac,
Infinite-dimensional Lie algebras. 3rd ed., Cambridge
University Press, Cambridge, 1990.
MathSciNet
CrossRef
- M. Primc, Vertex operator construction of standard modules
for An(1), Pacific J. Math. 162 (1994), 143-187.
MathSciNet
CrossRef
- M. Primc, Basic representations for classical
affine Lie algebras, J. Algebra 228 (2000), 1-50.
MathSciNet
CrossRef
- M. Primc, (k,r)-admissible configurations and intertwining
operators, Contemp. Math. 442 (2007), 425-434.
MathSciNet
- G. Trupčević, Combinatorial bases of Feigin-Stoyanovsky's type subspaces of
level 1 standard sl(l+1,C)-modules, Commun. Algebra 38 (2010), 3913-3940.
MathSciNet
CrossRef
- G. Trupčević, Combinatorial bases of Feigin-Stoyanovsky's type subspaces of
higher-level standard sl(l+1,C)-modules, J. Algebra 322 (2009), 3744-3774.
MathSciNet
CrossRef
Glasnik Matematicki Home Page