Glasnik Matematicki, Vol. 45, No.2 (2010), 525-530.
ON INVERSE LIMITS OF COMPACT SPACES. CORRECTION OF A PROOF
Sibe Mardešić
Department of Mathematics, University of Zagreb, P.O.Box 335, 10 002 Zagreb,
Croatia
e-mail: smardes@math.hr
Abstract. For a compact Hausdorff space X and an ANR for metrizable spaces
M, one considers the space
MX of all mappings from X to M, endowed with the compact-open topology.
Since a mapping f: X' → X induces a natural mapping
Mf : MX → MX', an inverse system of compact Hausdorff
spaces X determines a
direct system
M X of spaces as well as the corresponding direct system of
singular homology groups
Hn(M X;G). There is a natural isomorphism between
the direct limit dir lim Hn(M X;G) and the singular
homology group Hn(MX;G),
where X= inv lim X. This continuity theorem, used by some
authors, was published
more than 50 years ago. Unfortunately, the author discovered a
serious error in the proofs
of two lemmas on which the result depended. The present paper gives
new correct proofs of
these lemmas.
2000 Mathematics Subject Classification.
54C35, 54B35, 54C55, 55N10.
Key words and phrases. Homology of spaces of mappings, compact Hausdorff
space, absolute neighborhood retract, absolute neighborhood extensor,
direct system,
inverse system.
Full text (PDF) (free access)
DOI: 10.3336/gm.45.2.17
References:
- S. A. Antonyan,
Retraction properties of an orbit space (Russian),
Mat. Sb. (N.S.) 137(179) (1988), 300-318, 432; translation in
Math. USSR-Sb. 65 (1990), 305-321.
MathSciNet
- S. A. Antonyan,
The existence of a slice for an arbitrary compact transformation group
(Russian),
Mat. Zametki 56 (1994), 3-9, 157; translation in Math. Notes
56 (1994), 1101-1104.
MathSciNet
CrossRef
- R. Arens, Extensions of functions on fully normal spaces, Pacific J. Math. 2
(1952), 11-22.
MathSciNet
CrossRef
- A. V. Arhangelskiui, On a class of spaces containing all metric and all locally bicompact spaces (Russian), Dokl. Akad. Nauk SSSR 151
(1963), 751-754.
MathSciNet
- S. A. Bogatyui and V. A. Kalinin,
The movability of relatively different classes of spaces (Russian)
Mat. Zametki 21 (1977), 125-132.
MathSciNet
- J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367.
MathSciNet
CrossRef
- S.-T. Hu, Theory of retracts, Wayne State Univ. Press,
Detroit 1965.
- D. S. Kahn, J. Kaminker and
C. Schochet, Generalized homology theories on compact metric spaces,
Michigan Math. J. 24 (1977), 203-224.
MathSciNet
CrossRef
- S. T. Lin,
Fixed point properties and inverse limit spaces,
Pacific J. Math. 25 (1968) 117-122.
MathSciNet
CrossRef
- Ju. T. Lisica, Extension of continuous mappings and a factorization theorem (Russian), Sibirsk. Mat. Ž. 14 (1973), 128-139, 237.
MathSciNet
- S. Mardešić, On the homology of function spaces, Glasnik
Mat.-Fiz. Astr. Ser. II 11 (1956), 169-242.
MathSciNet
- S. Mardešić, On inverse limits of compact spaces, Glasnik
Mat.-Fiz. Astr. Ser. II 13 (1958), 249-255.
MathSciNet
- S. Mardešić, Strong shape and homology, Springer,
Berlin, 2000.
MathSciNet
- S. Mardešić and J. Segal, Shape
theory, North-Holland
Publ. Comp., Amsterdam, 1982.
MathSciNet
- L. D. Mdzinarishvili, On exact homology,
in Geometric topology and shape theory (Dubrovnik, 1986), Lecture Notes in
Math. 1283, Springer, Berlin, 1987, 164-182.
MathSciNet
- J. Milnor, On the Steenrod homology theory,
Mimeographed Notes, Berkeley, 1960.
- M. Wojdislawski, Rétracts absolus et hyperespaces des continus,
Fund. Math. 32 (1939), 184-192.
Glasnik Matematicki Home Page