Glasnik Matematicki, Vol. 45, No.2 (2010), 505-512.
CONTINUITY OF THE POLAR DECOMPOSITION FOR UNBOUNDED OPERATORS ON HILBERT C*-MODULES
Kamran Sharifi
Department of Mathematics,
Shahrood University of Technology, P. O. Box 3619995161-316,
Shahrood, Iran
e-mail: sharifi.kamran@gmail.com & sharifi@shahroodut.ac.ir
Abstract. For unbounded operators t,s between Hilbert
C*-modules which admit the polar decompositions V|t|, W|s|, respectively, we obtain an explicit upper
bound estimate for the gap between t and s in terms of the
norm of the bounded operators V-W,
C|t|-C|s| and
C|t*|-C|s*|, where
C|t| and C|s| are the Cayley
transforms of |t| and |s|. The result are used to drive a
criterion for continuity of the polar decomposition for unbounded
operators between Hilbert C*-modules.
2000 Mathematics Subject Classification.
46L08, 46C50, 47C15, 47B50.
Key words and phrases. Hilbert C*-module, unbounded operator, gap metric,
Cayley transform.
Full text (PDF) (free access)
DOI: 10.3336/gm.45.2.15
References:
- W. Arveson, An Invitation to C*-algebras, Springer, New York, 1976.
MathSciNet
- S. Baaj and P. Julg, Théorie bivariante de Kasparov et opérateurs non bornés dans les C*-modules hilbertiens, C. R. Acad. Sc., Paris, Series I 296 (1983),
875-878.
MathSciNet
- N. Castro-González, J. J. Koliha and V. Rakočević, Continuity and general perturbation of the Drazin inverse for closed linear operators, Abstr. Appl. Anal. 7 (2002),
335-347.
MathSciNet
CrossRef
- M. Frank, Geometrical aspects of Hilbert C*-modules, Positivity 3 (1999), 215-243.
MathSciNet
CrossRef
- M. Frank and K. Sharifi, Adjointability of densely defined closed operators and the Magajna-Schweizer theorem, J. Operator Theory 63 (2010), 271-282.
MathSciNet
- M. Frank and K. Sharifi, Generalized inverses and polar decomposition of unbounded regular operators on Hilbert C*-modules, J. Operator Theory 64 (2010), 377-386.
MathSciNet
- B. Guljaš, Unbounded operators on Hilbert C*-modules over C*-algebras of compact operators, J. Operator
Theory 59 (2008), no. 1, 179-192.
MathSciNet
- T. Kato, Perturbation theory for linear operators,
Springer Verlag, New York, 1984.
MathSciNet
- J. J. Koliha and V. Rakočević, Continuity of the Drazin inverse II, Studia Math. 131 (1998), no. 2, 167-177.
MathSciNet
- E. C. Lance, Hilbert C*-modules, LMS Lecture Note Series 210,
Cambridge Univ. Press, 1995.
MathSciNet
- B. Magajna, Hilbert C*-modules in which all closed submodules are complemented, Proc. Amer. Math. Soc. 125(3) (1997), 849-852.
MathSciNet
CrossRef
- K. Sharifi, The gap between unbounded regular operators, to appear in J. Operator Theory.
- K. Sharifi, Descriptions of partial isometries on Hilbert C*-modules, Linear Algebra Appl. 431 (2009), 883-887.
MathSciNet
CrossRef
- K. Sharifi, Topological approach to unbounded operators on Hilbert C*-modules, to appear in Rocky Mountain J. Math.
- N. E. Wegge-Olsen, K-theory and C*-algebras:
a Friendly Approach, Oxford University Press, Oxford, England, 1993.
MathSciNet
- S. L. Woronowicz, Unbounded elements affiliated with C*-algebras and noncompact quantum groups, Comm. Math. Phys. 136 (1991),
399-432.
MathSciNet
CrossRef
Glasnik Matematicki Home Page