Glasnik Matematicki, Vol. 45, No.2 (2010), 475-503.
VECTOR-VALUED INEQUALITIES ON HERZ SPACES AND CHARACTERIZATIONS OF HERZ-SOBOLEV SPACES WITH VARIABLE EXPONENT
Mitsuo Izuki
Department of Mathematics,
Faculty of Science, Hokkaido University,
Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
e-mail: mitsuo@math.sci.hokudai.ac.jp
Abstract. Our first aim in this paper is to prove the vector-valued inequalities for
some sublinear operators on Herz spaces with variable exponent.
As an application, we obtain some equivalent norms
and wavelet characterization of
Herz-Sobolev spaces with variable exponent.
2000 Mathematics Subject Classification.
42B20, 42B35, 42C40, 46B15.
Key words and phrases. Herz-Sobolev space with variable exponent, wavelet, vector-valued inequality.
Full text (PDF) (free access)
DOI: 10.3336/gm.45.2.14
References:
-
A. Baernstein II and E. T. Sawyer,
Embedding and multiplier theorems for Hp(Rn),
Mem. Amer. Math. Soc. 53 (1985), no. 318.
MathSciNet
- D. Cruz-Uribe, SFO, A. Fiorenza, J. M. Martell and C. Pérez,
The boundedness of classical operators on variable Lp spaces,
Ann. Acad. Sci. Fenn. Math. 31 (2006), 239-264.
MathSciNet
-
D. Cruz-Uribe, A. Fiorenza and C. J. Neugebauer,
The maximal function on variable Lp spaces,
Ann. Acad. Sci. Fenn. Math. 28 (2003), 223-238, and 29 (2004), 247-249.
MathSciNet
%i
MathSciNet
-
L. Diening,
Maximal functions on Musielak-Orlicz spaces and generalized Lebesgue spaces,
Bull. Sci. Math. 129 (2005), 657-700.
MathSciNet
CrossRef
-
E. Hernández and G. Weiss,
A first course on wavelets,
CRC Press, Boca Raton, 1996.
MathSciNet
-
E. Hernández, G. Weiss and D. Yang,
The φ-transform and wavelet characterizations of Herz-type spaces,
Collect. Math. 47 (1996), 285-320.
MathSciNet
-
E. Hernández and D. Yang,
Interpolation of Herz spaces and applications,
Math. Nachr. 205 (1999), 69-87.
MathSciNet
-
C. S. Herz,
Lipschitz spaces and Bernstein's theorem on absolutely convergent Fourier transforms,
J. Math. Mech. 18 (1968/1969), 283-323.
MathSciNet
-
M. Izuki,
Wavelets and modular inequalities in variable Lp spaces,
Georgian Math. J. 15 (2008), 281-293.
MathSciNet
-
M. Izuki,
Herz and amalgam spaces with variable exponent, the Haar wavelets and greediness of the wavelet system,
East J. Approx. 15 (2009), 87-109.
MathSciNet
-
M. Izuki,
Wavelet characterization of Herz-Sobolev spaces with variable exponent,
submitted.
-
M. Izuki and K. Tachizawa,
Wavelet characterizations of weighted Herz spaces,
Sci. Math. Jpn. 67 (2008), 353-363.
MathSciNet
-
S. E. Kelly, M. A. Kon and L. A. Raphael,
Local convergence for wavelet expansions,
J. Funct. Anal. 126 (1994), 102-138.
MathSciNet
CrossRef
-
T. S. Kopaliani,
Greediness of the wavelet system in Lp(t)(R) spaces,
East J. Approx. 14 (2008), 59-67.
MathSciNet
-
O. Kováčik and J. Rákosn'ik,
On spaces Lp(x) and Wk,p(x),
Czechoslovak Math. J. 41(116) (1991), 592-618.
MathSciNet
-
D. S. Kurtz,
Littlewood-Paley and multiplier theorems on weighted Lp spaces,
Trans. Amer. Math. Soc. 259 (1980), 235-254.
MathSciNet
CrossRef
-
X. Li and D. Yang,
Boundedness of some sublinear operators on Herz spaces,
Illinois J. Math. 40 (1996), 484-501.
MathSciNet
CrossRef
-
S. Lu, K. Yabuta and D. Yang,
Boundedness of some sublinear operators in weighted Herz-type spaces,
Kodai Math. J. 23 (2000), 391-410.
MathSciNet
CrossRef
-
S. Lu and D. Yang,
The decomposition of weighted Herz spaces on Rn and its application,
Sci. China Ser. A 38 (1995), 147-158.
MathSciNet
-
S. Lu and D. Yang,
Herz-type Sobolev and Bessel potential spaces and their applications,
Sci. China Ser. A 40 (1997), 113-129.
MathSciNet
CrossRef
-
Y. Meyer,
Wavelets and Operators,
Cambridge University Press, Cambridge, 1992.
MathSciNet
-
E. Nakai, N. Tomita and K. Yabuta,
Density of the set of all infinitely differentiable functions with compact support in weighted Sobolev spaces,
Sci. Math. Jpn. 60 (2004), 121-127.
MathSciNet
-
A. Nekvinda,
Hardy-Littlewood maximal operator on Lp(x)(Rn),
Math. Inequal. Appl. 7 (2004), 255-265.
MathSciNet
-
E. M. Stein,
Singular integrals and differentiability properties of functions,
Princeton University Press, Princeton, 1970.
MathSciNet
-
L. Tang and D. Yang,
Boundedness of vector-valued operators on weighted Herz spaces,
Approx. Theory Appl. (N.S.) 16 (2000), 58-70.
MathSciNet
-
H. Triebel,
Theory of Function Spaces, Birkhäuser, Basel, 1983.
MathSciNet
-
J. Xu and D. Yang,
Applications of Herz-type Triebel-Lizorkin spaces,
Acta Math. Sci. Ser. B Engl. Ed. 23 (2003), 328-338.
MathSciNet
-
J. Xu and D. Yang,
Herz-type Triebel-Lizorkin spaces. I,
Acta Math. Sci. (Engl. Ser.) 21 (2005), 643-654.
MathSciNet
CrossRef
Glasnik Matematicki Home Page