Glasnik Matematicki, Vol. 45, No.2 (2010), 461-474.

THE PROPERTIES OF CONVOLUTION TYPE TRANSFORMS IN WEIGHTED ORLICZ SPACES

Yunus E. Yildirir and Daniyal M. Israfilov

Department of Mathematics, Faculty of Education, Balikesir University, 10100 Balikesir, Turkey
e-mail: yildirir@balikesir.edu.tr

Department of Mathematics, Faculty of Art and Science, Balikesir University, 10145 Balikesir, Turkey
e-mail: mdaniyal@balikesir.edu.tr


Abstract.   In the weighted Orlicz spaces a convolution type transform is defined and a relation between this transform and the best approximation by trigonometric polynomials in the weighted Orlicz spaces is obtained.

2000 Mathematics Subject Classification.   41A10, 42A10.

Key words and phrases.   Convolution type transform, weighted Orlicz space, best approximation.


Full text (PDF) (free access)

DOI: 10.3336/gm.45.2.13


References:

  1. R. A. De Vore and G. G. Lorentz, Constructive approximation, Springer, 1993.
    MathSciNet    

  2. I. Genebashvili, A. Gogatishvili, V. Kokilashvili and M. Krbec, Weight theory for integral transforms on spaces of homogeneous type, Longman, 1998.
    MathSciNet    

  3. M. A. Krasnosel'skii, Y. B. Rutickii, Convex functions and Orlicz spaces, Noordholf, 1961.
    MathSciNet    

  4. D. S. Kurtz, Littlewood-Paley and multiplier theorems in weighted Lp spaces, Trans. Amer. Math. Soc. 259 (1980), 235-254.
    MathSciNet     CrossRef

  5. J. Marcinkiewicz, Sur les multiplicateurs des series de Fourier, Studia Mathematica 8 (1939) 78-91.

  6. V. G. Ponomarenko, M. F. Timan, The properties of convolution type transforms in the Orlicz spaces, in: Theory of approximation o functions, Proceedings of the institute Math. and Mech. 3, Donetsk, 1998.

  7. M. M. Rao and Z. D. Ren, Application of Orlicz spaces, Dekker, 2002.
    MathSciNet    

  8. M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Dekker, 1991.
    MathSciNet    

  9. G. I. Sunouchi, On the Walsh-Kaczmarz series, Proc. Amer. Math. Soc. 2 (1951), 5-11.
    MathSciNet     CrossRef

  10. A. Zygmund, Trigonometric series, vol. I, Cambridge Univ. Press, Cambridge, 1959.
    MathSciNet    

  11. A. Zygmund, Trigonometric series, vol. II, Cambridge Univ. Press, Cambridge, 1959.
    MathSciNet    

Glasnik Matematicki Home Page