Glasnik Matematicki, Vol. 45, No.2 (2010), 461-474.
THE PROPERTIES OF CONVOLUTION TYPE TRANSFORMS IN WEIGHTED ORLICZ SPACES
Yunus E. Yildirir and Daniyal M. Israfilov
Department of Mathematics, Faculty of Education, Balikesir University, 10100 Balikesir, Turkey
e-mail: yildirir@balikesir.edu.tr
Department of Mathematics, Faculty of Art and Science, Balikesir University, 10145 Balikesir, Turkey
e-mail: mdaniyal@balikesir.edu.tr
Abstract. In the weighted Orlicz spaces a convolution type transform is defined and a
relation between this transform and the best approximation by trigonometric
polynomials in the weighted Orlicz spaces is obtained.
2000 Mathematics Subject Classification.
41A10, 42A10.
Key words and phrases. Convolution type transform, weighted Orlicz
space, best approximation.
Full text (PDF) (free access)
DOI: 10.3336/gm.45.2.13
References:
- R. A. De Vore and G. G. Lorentz, Constructive
approximation, Springer, 1993.
MathSciNet
- I. Genebashvili, A. Gogatishvili, V. Kokilashvili and M. Krbec,
Weight theory for integral transforms on spaces of homogeneous type,
Longman, 1998.
MathSciNet
- M. A. Krasnosel'skii, Y. B. Rutickii, Convex
functions and Orlicz spaces, Noordholf, 1961.
MathSciNet
- D. S. Kurtz, Littlewood-Paley and multiplier theorems in weighted Lp spaces, Trans. Amer. Math. Soc. 259
(1980), 235-254.
MathSciNet
CrossRef
- J. Marcinkiewicz, Sur les multiplicateurs des series de Fourier, Studia Mathematica 8 (1939) 78-91.
- V. G. Ponomarenko, M. F. Timan, The properties of convolution type transforms in the Orlicz spaces, in: Theory of
approximation o functions, Proceedings of the institute Math. and Mech. 3, Donetsk, 1998.
- M. M. Rao and Z. D. Ren, Application of Orlicz spaces, Dekker,
2002.
MathSciNet
- M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Dekker,
1991.
MathSciNet
- G. I. Sunouchi, On the Walsh-Kaczmarz series,
Proc. Amer. Math. Soc. 2 (1951), 5-11.
MathSciNet
CrossRef
- A. Zygmund, Trigonometric series, vol. I, Cambridge Univ.
Press, Cambridge, 1959.
MathSciNet
- A. Zygmund, Trigonometric series, vol. II, Cambridge
Univ. Press, Cambridge, 1959.
MathSciNet
Glasnik Matematicki Home Page