Glasnik Matematicki, Vol. 45, No.2 (2010), 415-429.

COVERINGS OF FINITE GROUPS BY FEW PROPER SUBGROUPS

Yakov Berkovich

Department of Mathematics, University of Haifa, Mount Carmel, Haifa 31905, Israel


Abstract.   A connection between maximal sets of pairwise non-commuting elements and coverings of a finite group by proper subgroups is established. This allows us to study coverings of groups by few proper subgroups. The p-groups without p+2 pairwise non-commuting elements are classified. We also prove that if a p-group admits an irredundant covering by p+2 subgroups, then p=2. Some related topics are also discussed.

2000 Mathematics Subject Classification.   20D15.

Key words and phrases.   Minimal nonabelian p-groups, irredundant covering, minimal nonnilpotent groups, central product.


Full text (PDF) (free access)

DOI: 10.3336/gm.45.2.09


References:

  1. Y. Berkovich, Groups of Prime Power Order, Volume 1, Walter de Gruyter, Berlin, 2008.
    MathSciNet    

  2. Y. Berkovich, Minimal nonabelian and maximal subgroups of a finite p-group, Glas. Mat. Ser. III 43(63) (2008), 97-109.
    MathSciNet     CrossRef

  3. Ya. G. Berkovich and E. M. Zhmud', Characters of Finite Groups. Part 1, Translations of Mathematical Monographs, Volume 172, American Mathematical Society, Providence, 1998.
    MathSciNet    

  4. M. Bhargava, Groups as unions of proper subgroups, Amer. Math. Monthly 116 (2009), 413-422.
    MathSciNet     CrossRef

  5. R. Brown, Minimal covers of Sn by abelian subgroups and maximal subsets of pairwise noncommuting elements, J. Combin. Theory Ser A 49 (1988), 294-307; ibid. II, J. Combin. Theory Ser A 56 (1991), 285-289.
    MathSciNet     CrossRef     MathSciNet     CrossRef

  6. J. H. E. Cohn, On n-sum groups, Math. Scand. 75 (1994), 44-58.
    MathSciNet    

  7. M. Hall, Combinatorial Theory, Wiley, New York, 1986.
    MathSciNet    

  8. I. M. Isaacs, Algebra. A Graduate Course, Brooks/Cole, Pacific Grove, 1994.
    MathSciNet    

  9. B. H. Neumann, Groups covered by finitely many cosets, Publ. Math. Debrecen 3 (1954), 227-242.
    MathSciNet    

  10. L. Pyber, The number of pairwise noncommuting elements and the index of the centre in a finite group, J. London. Math. Soc. (2) 35 (1987), 287-295.
    MathSciNet     CrossRef

  11. N. F. Sesekin and O. S. Shirokovskaya, A class of bigraded groups, Mat. Sb. N.S. 46(88) (1958), 133-142 (Russian).
    MathSciNet    

  12. M. J. Tomkinson, Groups as the union of proper subgroups, Math. Scand. 81 (1997), 191-198.
    MathSciNet    

  13. G. Zappa, The papers of Gaetano Scorza on group theory, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 2 (1991), 95-101.
    MathSciNet    

Glasnik Matematicki Home Page