Glasnik Matematicki, Vol. 45, No.2 (2010), 395-406.

VERY STRONG MULTIPLICATION IDEALS AND THE IDEAL θ (I) OVER A COMMUTATIVE SEMIRING

Shahabaddin Ebrahimi Atani and Reza Ebrahimi Atani

Department of Mathematics, University of Guilan, P.O. Box 1914, Rasht, Iran
e-mail: ebrahimi@guilan.ac.ir

Department of Electrical Engineering, University of Guilan, P.O.Box 3756, Rasht, Iran
e-mail: rebrahimi@guilan.ac.ir


Abstract.   Let R a commutative semiring with identity. An ideal I is called a multiplication ideal if every ideal contained in I is a multiple of I. We consider the associated ideal θ (I). It is proved that the strong ideal θ (I) is important in the study of multiplication ideals. Among various applications given, the following results are proved: if I is a faithful very strong multiplication ideal, then the strong ideal θ (I) is an idempotent ideal of R such that θ (θ (I)) = θ (I), and every secondary representable ideal of R which is also a very strong multiplication ideal is finitely generated.

2000 Mathematics Subject Classification.   16Y60.

Key words and phrases.   Very strong multiplication ideals, ideal θ (I), secondary ideals.


Full text (PDF) (free access)

DOI: 10.3336/gm.45.2.07


References:

  1. D. D. Anderson, Some remarks on multiplication ideals, Math. Japon. 25 (1980), 463-469.
    MathSciNet    

  2. D. D. Anderson and Y. Al-Shaniafi, Multiplication modules and the ideal θ (M), Commm. Algebra 30 (2002), 3383-3390.
    MathSciNet     CrossRef

  3. P. J. Allen, A fundamental theorem of homomorphisms for semirings, Proc. Amer. Math. Soc. 21 (1969), 412-416.
    MathSciNet     CrossRef

  4. Z. A. El-Bast and P. F. Smith, Multiplication modules, Commm. Algebra 16 (1988), 755-779.
    MathSciNet     CrossRef

  5. S. Ebrahimi Atani, The ideal theory in quotients of commutative semirings, Glas. Math. Ser. III 42(62) (2007), 301-308.
    MathSciNet     CrossRef

  6. S. Ebrahimi Atani, On primal and weakly primal ideals over commutative semirings, Glas. Math. Ser. III 43(63) (2008), 13-23.
    MathSciNet     CrossRef

  7. S. Ebrahimi Atani, The zero-divisor graph with respect to ideals of a commutative semiring, Glas. Math. Ser. III 43(63) (2008), 309-320.
    MathSciNet     CrossRef

  8. S. Ebrahimi Atani, An ideal-based zero-divisor graph of a commutative semiring, Glas. Math. Ser. III 44(64) (2009), 141-153.
    MathSciNet     CrossRef

  9. R. Ebrahimi Atani and S. Ebrahimi Atani, Ideal theory in commutative semirings, Bul. Acad. Ştiinte Repub. Mold. Mat. 2 (2008), 14-23.
    MathSciNet    

  10. J. S. Golan, The theory of semirings with applications in mathematics and theoretical computer science, Pitman Monographs and Surveys in Pure and Applied Mathematics 54, Longman Scientific and Technical, Harlow, 1992.
    MathSciNet    

  11. U. Hebisch and U. J. Weinert Halbringe. Algebraische Theorie und Anwendungen in der Informatik, Teubner, Stuttgart, 1993.
    MathSciNet    

  12. I. G. Macdonald, Secondary representation of modules over commutative ring, Symposia Mathematica XI, Academic Press, London, 1973, 23-43.
    MathSciNet    

  13. P. F. Smith, Some remarks on multiplication modules, Arch. Math. (Basel) 50 (1988), 223-235.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page