Glasnik Matematicki, Vol. 45, No.2 (2010), 373-393.
THE SMOOTH IRREDUCIBLE REPRESENTATIONS OF U(2)
Manouchehr Misaghian
Department of Mathematics,
Prairie View A & M University,
Prairie View, TX 77446
e-mail: mamisaghian@pvamu.edu
Abstract. In this paper we parametrize all smooth irreducible representations of U(2), the compact unitary group in two variables.
2000 Mathematics Subject Classification.
11F27, 20E99, 22E50.
Key words and phrases. Group of isometries, stabilizer, smooth representation, induction.
Full text (PDF) (free access)
DOI: 10.3336/gm.45.2.06
References:
- C. Curtis, I. Reiner, Representation theory and
associative algebra, Wiley, New York, 1988.
MathSciNet
- J. Dieudonné, La géométrie
des groupes classiques, Second édition,
Springer-Verlag, Berlin, 1963.
MathSciNet
- I. B. Fesenko, S. Vostokov, Local fields and their
extensions, AMS, Rhode Island, 1993.
MathSciNet
- P. Kutzko, On the supercuspidal representations of Gl2 II, Amer. J. Math. 100 (1978), 705-716.
- D. Manderscheid, On the supercuspidal representations of SL2 and its two-fold cover. II, Math. Ann.
266 (1984), 287-295.
MathSciNet
CrossRef
- D. Manderscheid, Supercuspidal representations and the theta correspondence II: SL(2) and The Anisotropic O(3), Trans. Amer. Math. Soc., 336 (1993), 805-816.
MathSciNet
CrossRef
- M. Misaghian, Representations of D1, Rocky Mountain J. Math. 35 (2005), 953-976.
MathSciNet
CrossRef
- O. O'Meara, Introduction to quadratic forms,
Springer-Verlag, New York, 1971.
MathSciNet
- I. Reiner, Maximal orders, Academic Press, London 1975.
MathSciNet
- Marie-France Vignéras, Arithmétique des algèbres de quaternions, Springer-Verlag,
Berlin Heidelberg New York, 1980.
MathSciNet
- C. Moeglin, M.-F. Vignéras, J.-L. Waldspurger,
Correspondances de Howe sur un corps p-adique, Lecture Notes in Math. 1291, Springer-Verlag,
Berlin/New York, 1987.
MathSciNet
- S. Stevens, Intertwining and supercuspidal types for p-adic classical groups, Proc. London Math. Soc. (3) 83 (2001),
120-140.
MathSciNet
CrossRef
- A. Weil, Basic number theory, Springer-Verlag, New
York, 1967.
MathSciNet
- E. Weiss, Algebraic number theory, Mc Graw-Hill Book
Company, New York, 1963.
MathSciNet
Glasnik Matematicki Home Page