Glasnik Matematicki, Vol. 45, No.2 (2010), 347-355.
SMOOTH VALUES OF SOME QUADRATIC POLYNOMIALS
Filip Najman
Department of Mathematics,
University of Zagreb,
Bijenička cesta 30, 10000 Zagreb,
Croatia
e-mail: fnajman@math.hr
Abstract. In this paper, using a method of Luca and the author, we find all values x such that the quadratic forms x2+1, x2+4, x2+2 and x2-2 are 200-smooth and all values x such that the quadratic form x2-4 is 100-smooth.
2000 Mathematics Subject Classification.
11D09, 11Y50.
Key words and phrases. Pell equation, compact representations, Lucas sequences.
Full text (PDF) (free access)
DOI: 10.3336/gm.45.2.04
References:
- Yu. Bilu, G. Hanrot and P. M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers. With an appendix by M. Mignotte, J. Reine Angew. Math. 539 (2001), 75-122.
MathSciNet
CrossRef
-
J. Buchmann,
A subexponential algorithm for the determination of class groups and regulators of algebraic number fields, in Séminaire de
Théorie des Nombres, Paris 1988-1989, Progr. Math. 91 Birkhäuser, Boston, 1990, 27-41.
MathSciNet
-
J. Buchmann, K. Gy\H ory, M. Mignotte and N. Tzanakis, Lower bounds for P(x3+k), an elementary approach, Publ. Math. Debrecen 38 (1991), 145-163.
MathSciNet
-
R. D. Carmichael,
On the numerical factors of the arithmetic forms αn ± βn, Ann. of. Math. (2) 15 (1913/1914), 30-70.
MathSciNet
MathSciNet
-
J. H. Evertse and R. Tijdeman, Some open problems about Diophantione equations from a workshop in Leiden in May 2007, see
http://www.math.leidenuniv.nl/ evertse/07-workshop-problems.pdf.
-
S. Guzmán Sánchez, Factores primos de x2± 2, Bachelor Thesis, Universidad de Guanajuato, Guanajuato, México, 2008.
-
M. J. Jacobson Jr. and H. C .Williams, Solving the Pell equation, Springer, New York, 2009.
MathSciNet
-
D. H. Lehmer, On a problem of Störmer, Illinois J. Math 8 (1964),
57-79.
MathSciNet
CrossRef
- F. Luca, Primitive divisors of Lucas sequences and prime factors of x2+1 and x4+1, Acta Acad. Paedagog. Agriensis Sect. Mat. (N.S.)
31 (2004), 19-24.
MathSciNet
-
F. Luca and F. Najman, On the largest prime factor of x2-1, Math. Comp. 80 (2011), 429-435.
CrossRef
-
M. Maurer, Regulator approximation and fundamental unit computation for real quadratic orders, PhD thesis, Technische Universität Darmstadt,
Fachbereich Informatik, Darmstadt, Germany, 2000.
-
F. Najman,
Compact representation of quadratic integers and integer points on some elliptic curves, Rocky Mountain J. Math., to appear.
-
O. Perron,
Die Lehre von den Kettenbruchen, Chelsea Publ. Comp., 1929.
-
M. Ward,
The intrinsic divisors of Lehmer numbers, Ann. of Math. (2) 62 (1955), 230-236.
MathSciNet
CrossRef
-
H. Yokoi,
Solvability of the Diophantine equation x2-Dy2=± 2 and new invariants for real quadratic fields, Nagoya Math. J. 134 (1994), 137-149.
MathSciNet
CrossRef
Glasnik Matematicki Home Page