Glasnik Matematicki, Vol. 45, No.2 (2010), 291-305.
PRIMITIVE SYMMETRIC DESIGNS WITH AT MOST 255
POINTS
Snježana Braić
University of Split, Faculty of Science and Mathematics,
Teslina 12/III, 21000 Split, Croatia
e-mail: sbraic@pmfst.hr
Abstract. In this paper we either prove the non-existence or give explicit construction
of all (v, k, λ) symmetric designs with primitive
automorphism groups of degree v ≤ 255. We prove that, up to isomorphism,
there exist exactly 142 such designs. The research involves programming and
wide-range computations. We make use of software package GAP and the library
of primitive groups which it contains.
2000 Mathematics Subject Classification.
05B05, 05B10.
Key words and phrases. Symmetric design, primitive automorphism group, difference set.
Full text (PDF) (free access)
DOI: 10.3336/gm.45.2.01
References:
- T. Beth, D. Jungnickel and H. Lenz, Design theory,
Cambridge University Press, Cambridge, 1999.
MathSciNet
MathSciNet
- S. Braić, Symmetric designs with primitive
automorphism groups, PhD-thesis, University of Zagreb, 2007.
- P. J. Cameron, Permutation groups, Cambridge
University Press, Cambridge, 1999.
MathSciNet
- C. J. Colbourn and J. H. Dinitz, Eds., Handbook of
combinatorial designs, Second Edition, CRC Press, Boca Raton, 2007.
MathSciNet
- D. Crnković,
Symmetric (36,15,6)
design having U(3,3) as an automorphism group,
Glas. Mat. Ser. III 34(54) (1999), 1-3.
MathSciNet
- U. Dempwolff and W. M. Kantor,
Symmetric designs from the
G2(q) generalized hexagons, J. Combin. Theory Ser. A 98 (2002),
410-415.
MathSciNet
CrossRef
- U. Dempwolff,
Affine rank 3 groups on symmetric
designs,
Des. Codes Cryptogr. 31 (2004), 159-168.
MathSciNet
CrossRef
- J. D. Dixon and B. Mortimer, Permutation groups,
Springer, New York, 1996.
MathSciNet
- The GAP Group, GAP - groups, algorithms, and programming,
version 4.4; Aachen, St. Andrews, 2006,
http://www.gap-system.org.
- D. G. Higman,
Finite permutation groups of rank 3,
Math. Z. 86 (1964), 145-156.
MathSciNet
CrossRef
- W. M. Kantor,
Classification of 2-transitive symmetric designs,
Graphs Combin. 1 (1985), 165-166.
MathSciNet
CrossRef
- E. S. Lander, Symmetric designs: an algebraic
approach, London Mathematical Society Lecture Note Series 74, Cambridge
University Press, London, 1983.
MathSciNet
- J. J. Seidel, A. Blokhuis and H. A. Wilbrink, Graphs and
Association Schemes, Algebra and Geometry, EUT-Report 83-WSK-02, 1983.
- L. H. Soicher, The DESIGN package for GAP, Version 1.3, 2006,
http://designtheory.org/software/gap_design/.
- W. Wirth, Konstruktion symmetrischer Designs,
PhD-thesis, University of Mainz, 2000.
Glasnik Matematicki Home Page