Glasnik Matematicki, Vol. 45, No.2 (2010), 291-305.

PRIMITIVE SYMMETRIC DESIGNS WITH AT MOST 255 POINTS

Snježana Braić

University of Split, Faculty of Science and Mathematics, Teslina 12/III, 21000 Split, Croatia
e-mail: sbraic@pmfst.hr


Abstract.   In this paper we either prove the non-existence or give explicit construction of all (v, k, λ) symmetric designs with primitive automorphism groups of degree v ≤ 255. We prove that, up to isomorphism, there exist exactly 142 such designs. The research involves programming and wide-range computations. We make use of software package GAP and the library of primitive groups which it contains.

2000 Mathematics Subject Classification.   05B05, 05B10.

Key words and phrases.   Symmetric design, primitive automorphism group, difference set.


Full text (PDF) (free access)

DOI: 10.3336/gm.45.2.01


References:

  1. T. Beth, D. Jungnickel and H. Lenz, Design theory, Cambridge University Press, Cambridge, 1999.
    MathSciNet     MathSciNet    

  2. S. Braić, Symmetric designs with primitive automorphism groups, PhD-thesis, University of Zagreb, 2007.

  3. P. J. Cameron, Permutation groups, Cambridge University Press, Cambridge, 1999.
    MathSciNet    

  4. C. J. Colbourn and J. H. Dinitz, Eds., Handbook of combinatorial designs, Second Edition, CRC Press, Boca Raton, 2007.
    MathSciNet    

  5. D. Crnković, Symmetric (36,15,6) design having U(3,3) as an automorphism group, Glas. Mat. Ser. III 34(54) (1999), 1-3.
    MathSciNet    

  6. U. Dempwolff and W. M. Kantor, Symmetric designs from the G2(q) generalized hexagons, J. Combin. Theory Ser. A 98 (2002), 410-415.
    MathSciNet     CrossRef

  7. U. Dempwolff, Affine rank 3 groups on symmetric designs, Des. Codes Cryptogr. 31 (2004), 159-168.
    MathSciNet     CrossRef

  8. J. D. Dixon and B. Mortimer, Permutation groups, Springer, New York, 1996.
    MathSciNet    

  9. The GAP Group, GAP - groups, algorithms, and programming, version 4.4; Aachen, St. Andrews, 2006,
    http://www.gap-system.org.

  10. D. G. Higman, Finite permutation groups of rank 3, Math. Z. 86 (1964), 145-156.
    MathSciNet     CrossRef

  11. W. M. Kantor, Classification of 2-transitive symmetric designs, Graphs Combin. 1 (1985), 165-166.
    MathSciNet     CrossRef

  12. E. S. Lander, Symmetric designs: an algebraic approach, London Mathematical Society Lecture Note Series 74, Cambridge University Press, London, 1983.
    MathSciNet    

  13. J. J. Seidel, A. Blokhuis and H. A. Wilbrink, Graphs and Association Schemes, Algebra and Geometry, EUT-Report 83-WSK-02, 1983.

  14. L. H. Soicher, The DESIGN package for GAP, Version 1.3, 2006,
    http://designtheory.org/software/gap_design/.

  15. W. Wirth, Konstruktion symmetrischer Designs, PhD-thesis, University of Mainz, 2000.


Glasnik Matematicki Home Page