Glasnik Matematicki, Vol. 45, No.1 (2010), 173-217.

ON EXPANSIONS AND PRO-PRO-CATEGORIES

Nikica Uglešić and Vlasta Matijević

University of Zadar, Pavlinovićeva bb, 23000 Zadar, Croatia
e-mail: nuglesic@unizd.hr

Department of Mathematics, University of Split, Teslina 12/III, 21000 Split, Croatia
e-mail: vlasta@pmfst.hr


Abstract.   If (C,D) is a category pair such that D subset C is a pro-reflective subcategory, then so is D subset pro-C and, inductively, D subset pronC as well. The key fact is that the terms and morphisms of D-expansions of all the terms of a C-system can be naturally organized in a D-expansion of the system. Therefore, in dealing with expansions, there is no need to involve the pro-pro-category technique. In particular, the shape of a C-system, as well as of a C-object, reduces to the isomorphism class of a D-system. On the other hand, a pro-pro-category could be useful for some other purposes because it admits functorial expansions which are inverse limits. Some applications of the theoretical part are considered, especially, concerning the Stone-Čech compactification and Hewitt realcompactification.

2000 Mathematics Subject Classification.   55P55, 18A32.

Key words and phrases.   Pro-category, pro-pro-category, expansion, pro-reflective subcategory, shape, polyhedron, compact Hausdorff space, completely regular space, Stone-Čech compactification, Hewitt realcompactification.


Full text (PDF) (free access)

DOI: 10.3336/gm.45.1.13


References:

  1. M. Artin and B. Mazur, Etale Homotopy, Lecture Notes in Mathematics 100, Springer-Verlag, Berlin - Heidelberg, 1969.
    MathSciNet

  2. J. Dugundji, Topology, Allyn and Bacon, Boston, 1978.
    MathSciNet

  3. Encyclopedia of General Topology, K. P. Hart, J. Nagata and J. E. Vaughan (editors), Elsevier, North-Holland, Amsterdam, 2004.
    MathSciNet

  4. I. Glicksberg, The Stone - Čech compactification of products, Trans. Amer. Math. Soc. 90 (1959), 369-382.
    MathSciNet     CrossRef

  5. L. Gillman and M. Jerison, Rings of continuous functions, Grad. Texts in Math. 43, Springer Verlag, 1976.
    MathSciNet

  6. W. Holsztynsky, An extension and axiomatic characterization of Borsuk's theory of shape, Fund. Math. 70 (1971), 157-168.
    MathSciNet

  7. R. D. Kopperman and R. G. Wilson, Finite approximation of compact Hausdorff spaces, Topology Proc. 22 (1977), 175-200.
    MathSciNet

  8. V. A. Kovalevsky, Finite topology as applied to image analysis, Comput. Vision Graphics Image Process. 46 (1989), 141-161.
    CrossRef

  9. S. Mardesic, Shape theory, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), (1980), 481-489.
    MathSciNet

  10. S. Mardesic and J. Segal, Shapes of compacta and ANR-systems, Fund. Math. 72 (1971), 41-59.
    MathSciNet

  11. S. Mardesic and J. Segal, Shape Theory, North-Holland, Amsterdam, 1982.
    MathSciNet

  12. S. Mardesic and N. Uglesic, On iterated inverse limits. In memory of T. Benny Rushing, Topology Appl. 120 (2002), 157-167.
    MathSciNet     CrossRef

  13. K. Morita, The Hurewicz and the Whitehead theorems in shape theory, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 12 (1974), 246-258.
    MathSciNet

  14. K. Morita, On shapes of topological spaces, Fund. Math. 86 (1975), 251-259.
    MathSciNet

  15. L. Stramaccia, Reflective subcategories and dense subcategories, Rend. Sem. Mat. Univ. Padova 67 (1982), 191-198.
    MathSciNet     Numdam

  16. W. Tholen, Pro-categories and multiadjoint functors, Canad. J. Math. 36 (1984), 144-155.
    MathSciNet

  17. N. Uglesic, Iterated resolutions, Glas. Mat. Ser. III 35(55) (2000), 245-259.
    MathSciNet

  18. M. D. Weir, Hewitt-Nachbin spaces, North-Holland, Amsterdam, 1975.
    MathSciNet


Glasnik Matematicki Home Page