Glasnik Matematicki, Vol. 45, No.1 (2010), 155-172.

STABILITY OF THE FELLER PROPERTY FOR NON-LOCAL OPERATORS UNDER BOUNDED PERTURBATIONS

Yuichi Shiozawa and Toshihiro Uemura

College of Science and Engineering, Ritsumeikan University, Kusatsu Shiga 525-8577, Japan
Current address: Graduate School of Natural Science and Engineering, Okayama University, Okayama 700-8530, Japan
e-mail: shiozawa@ems.okayama-u.ac.jp

School of Business Administration, University of Hyogo, Kobe 651-2197, Japan
Current address: Department of Mathematics, Faculty of Engineering Science, Kansai University, Suita, Osaka 564-8680, Japan
e-mail: uemura@biz.u-hyogo.ac.jp
e-mail: t-uemura@kansai-u.ac.jp


Abstract.   It is known that the Feller property of a semigroup is stable under a bounded perturbation of the infinitesimal generator. Applying this, we derive the Feller property for a class of integro-differential operators including symmetric stable-like processes.

2000 Mathematics Subject Classification.   47G20, 60J75, 31C25.

Key words and phrases.   Integro-differential operator, Feller semigroup, symmetric Dirichlet form of jump-type, stable-like process.


Full text (PDF) (free access)

DOI: 10.3336/gm.45.1.12


References:

  1. N. Aronszajn and K. T. Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble) 11 (1961), 385-475.
    MathSciNet     Numdam

  2. R. F. Bass, Uniqueness in law for pure jump Markov processes, Probab. Theory Related Fields 79 (1988), 271-287.
    MathSciNet     CrossRef

  3. R. F. Bass, Stochastic differential equations with jumps, Probab. Surv. 1 (2004), 1-19.
    MathSciNet     CrossRef

  4. R. F. Bass, SDEs with jumps, Lecture notes for Cornell Summer School in Probability, 55 pages, 2007.
    http://www.math.uconn.edu/~bass/lecture.html

  5. R. F. Bass and M. Kassmann, Hölder continuity of harmonic functions with respect to operators of variable order, Comm. Partial Differential Equations 30 (2005), 1249-1259.
    MathSciNet     CrossRef

  6. R. F. Bass and D. A. Levin, Harnack inequalities for jump processes, Potential Anal. 17 (2002), 375-388.
    MathSciNet     CrossRef

  7. N. Bouleau and F. Hirsch, Dirichlet forms and analysis on Wiener space, Walter de Gruyter, Berlin, 1991.
    MathSciNet

  8. Z.-Q. Chen and T. Kumagai, Heat kernel estimates for stable-like processes on d-sets, Stochastic Process. Appl. 108 (2003), 27-62.
    MathSciNet     CrossRef

  9. E. B. Davies, One-parameter semigroups, Academic Press, London, 1980.
    MathSciNet

  10. S. N. Ethier and T. G. Kurtz, Markov Processes. Characterization and Convergence, Wiley, New York, 1986.
    MathSciNet

  11. M. Fukushima, Dirichlet spaces and strong Markov processes, Trans. Amer. Math. Soc. 162 (1971), 185-224.
    MathSciNet     CrossRef

  12. M. Fukushima, Y. Oshima and M. Takeda, Dirichlet forms and symmetric Markov processes, Walter de Gruyter, Berlin, 1994.
    MathSciNet

  13. M. Fukushima and D. Stroock, Reversibility of solutions to martingale problems, Probability, statistical mechanics, and number theory, Adv. Math. Suppl. Stud., 9, Academic Press, Orlando, 1986, 107-123.
    MathSciNet

  14. R. Husseini and M. Kassmann, Jump processes, L-harmonic functions, continuity estimates and the Feller property, Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009), 1099-1115.
    MathSciNet     CrossRef

  15. Y. Isozaki and T. Uemura, A family of symmetric stable-like processes and its global path properties, Probab. Math. Statist. 24 (2004), 145-164.
    MathSciNet

  16. N. Jacob, Pseudo Differential Operators and Markov Processes, Vol. 1-3, Imperial College Press, 2001-5.
    MathSciNet

  17. A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983.
    MathSciNet

  18. K. Sato, Lévy processes and infinitely divisible distributions, Cambridge University Press, Cambridge, 1999.
    MathSciNet

  19. R. L. Schilling and T. Uemura, On the Feller property of Dirichlet forms generated by pseudo differential operators, Tohoku Math. J. (2) 59 (2007), 401-422.
    MathSciNet     CrossRef

  20. R. Song and Z. Vondracek, Harnack inequality for some classes of Markov processes, Math. Z. 246 (2004), 177-202.
    MathSciNet     CrossRef

  21. T. Uemura, On some path properties of symmetric stable-like processes for one dimension, Potential Anal. 16 (2002), 79-91.
    MathSciNet     CrossRef

  22. T. Uemura, On symmetric stable-like processes: some path properties and generators, J. Theoret. Probab. 17 (2004), 541-555.
    MathSciNet     CrossRef

  23. T. Uemura, A remark on non-local operators with variable order, Osaka J. Math. 46 (2009), 503-514.
    MathSciNet

  24. M. Fukushima and T. Uemura, Jump-type Hunt processes generated by lower bounded semi-Dirichlet forms, preprint, 2010.


Glasnik Matematicki Home Page