Glasnik Matematicki, Vol. 45, No.1 (2010), 155-172.
STABILITY OF THE FELLER PROPERTY FOR
NON-LOCAL OPERATORS UNDER BOUNDED PERTURBATIONS
Yuichi Shiozawa and Toshihiro Uemura
College of Science and Engineering, Ritsumeikan University, Kusatsu Shiga 525-8577, Japan
Current address: Graduate School of Natural Science and Engineering, Okayama University,
Okayama 700-8530, Japan
e-mail: shiozawa@ems.okayama-u.ac.jp
School of Business Administration, University of Hyogo, Kobe 651-2197, Japan
Current address: Department of Mathematics, Faculty of Engineering Science,
Kansai University, Suita, Osaka 564-8680, Japan
e-mail: uemura@biz.u-hyogo.ac.jp
e-mail: t-uemura@kansai-u.ac.jp
Abstract. It is known that the Feller property of a semigroup is stable
under a bounded perturbation of the infinitesimal generator.
Applying this, we derive the Feller property
for a class of integro-differential operators
including symmetric stable-like processes.
2000 Mathematics Subject Classification.
47G20, 60J75, 31C25.
Key words and phrases. Integro-differential operator, Feller semigroup,
symmetric Dirichlet form of jump-type, stable-like process.
Full text (PDF) (free access)
DOI: 10.3336/gm.45.1.12
References:
- N. Aronszajn and K. T. Smith,
Theory of Bessel potentials. I,
Ann. Inst. Fourier (Grenoble) 11 (1961), 385-475.
MathSciNet
Numdam
- R. F. Bass,
Uniqueness in law for pure jump Markov processes,
Probab. Theory Related Fields 79 (1988), 271-287.
MathSciNet
CrossRef
- R. F. Bass,
Stochastic differential equations with jumps,
Probab. Surv. 1 (2004), 1-19.
MathSciNet
CrossRef
- R. F. Bass,
SDEs with jumps, Lecture notes for
Cornell Summer School in Probability, 55 pages, 2007.
http://www.math.uconn.edu/~bass/lecture.html
- R. F. Bass and M. Kassmann,
Hölder continuity of harmonic functions
with respect to operators of variable order,
Comm. Partial Differential Equations 30 (2005), 1249-1259.
MathSciNet
CrossRef
- R. F. Bass and D. A. Levin,
Harnack inequalities for jump processes,
Potential Anal. 17 (2002), 375-388.
MathSciNet
CrossRef
- N. Bouleau and F. Hirsch,
Dirichlet forms and analysis on Wiener space,
Walter de Gruyter, Berlin, 1991.
MathSciNet
- Z.-Q. Chen and T. Kumagai,
Heat kernel estimates for stable-like processes on d-sets,
Stochastic Process. Appl. 108 (2003), 27-62.
MathSciNet
CrossRef
- E. B. Davies,
One-parameter semigroups,
Academic Press, London, 1980.
MathSciNet
- S. N. Ethier and T. G. Kurtz,
Markov Processes. Characterization and Convergence,
Wiley, New York, 1986.
MathSciNet
- M. Fukushima,
Dirichlet spaces and strong Markov processes,
Trans. Amer. Math. Soc. 162 (1971), 185-224.
MathSciNet
CrossRef
- M. Fukushima, Y. Oshima and M. Takeda,
Dirichlet forms and symmetric Markov processes,
Walter de Gruyter, Berlin, 1994.
MathSciNet
- M. Fukushima and D. Stroock,
Reversibility of solutions to martingale problems,
Probability, statistical mechanics, and number theory,
Adv. Math. Suppl. Stud., 9,
Academic Press, Orlando, 1986, 107-123.
MathSciNet
- R. Husseini and M. Kassmann,
Jump processes, L-harmonic functions, continuity estimates
and the Feller property,
Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009), 1099-1115.
MathSciNet
CrossRef
- Y. Isozaki and T. Uemura,
A family of symmetric stable-like processes and its global path properties,
Probab. Math. Statist. 24 (2004), 145-164.
MathSciNet
- N. Jacob,
Pseudo Differential Operators and
Markov Processes, Vol. 1-3, Imperial College Press, 2001-5.
MathSciNet
- A. Pazy,
Semigroups of linear operators and applications to partial
differential equations, Springer-Verlag, New York, 1983.
MathSciNet
- K. Sato,
Lévy processes and infinitely divisible distributions,
Cambridge University Press, Cambridge, 1999.
MathSciNet
- R. L. Schilling and T. Uemura,
On the Feller property of Dirichlet forms
generated by pseudo differential operators, Tohoku Math. J. (2)
59 (2007), 401-422.
MathSciNet
CrossRef
- R. Song and Z. Vondracek,
Harnack inequality for some classes of Markov processes,
Math. Z. 246 (2004), 177-202.
MathSciNet
CrossRef
- T. Uemura,
On some path properties of symmetric stable-like processes
for one dimension,
Potential Anal. 16 (2002), 79-91.
MathSciNet
CrossRef
- T. Uemura,
On symmetric stable-like processes: some path properties and
generators, J. Theoret. Probab. 17 (2004), 541-555.
MathSciNet
CrossRef
- T. Uemura,
A remark on non-local operators with variable order,
Osaka J. Math. 46 (2009), 503-514.
MathSciNet
- M. Fukushima and T. Uemura,
Jump-type Hunt processes generated by lower bounded
semi-Dirichlet forms, preprint, 2010.
Glasnik Matematicki Home Page