Glasnik Matematicki, Vol. 45, No.1 (2010), 125-137.
SLIP-DEPENDENT FRICTION IN DYNAMIC ELECTROVISCOELASTICITY
Mostafa Kabbaj and El-Hassan Essoufi
Department of Mathematics, Faculty of Sciences and Techniques, University Moulay Ismail,
B. P. 509 - Boutalamine, Errachidia, Morocco
e-mail: kabbaj.mostafa@gmail.com
Department of Mathematics, Faculty of Sciences and Techniques Settat,
University Hassan Premier, Km 3, route Casablanca, B.P. 577, Settat, Morocco
e-mail: essoufi@gmail.com
Abstract. Existence and uniqueness of a weak
solution for dynamical frictional contact between an
electro-viscoelastic body and a rigid electrically non-conductive
obstacle is established. The contact is modelled with a simplified
version of Coulomb's law of dry friction in which the coefficient
of friction depends on the slip. The proof is based on the
regularization method, Faedo-Galerkin method, compactness and
lower semicontinuity arguments.
2000 Mathematics Subject Classification.
37L65, 49J40, 74A55, 74D05, 74H20, 74H25.
Key words and phrases. Dynamic electroviscoelasticity, second-order hyperbolic variational
inequality, regularization method, Faedo-Galerkin method,
compactness method, existence, uniqueness.
Full text (PDF) (free access)
DOI: 10.3336/gm.45.1.10
References:
- R. C. Batra and J. S. Yang,
Saint-Venant's principle in linear
piezoelectricity, J. Elasticity 38 (1995),
209-218.
MathSciNet
CrossRef
- P. Bisenga, F. Lebon and F. Maceri,
The unilateral frictional
contact of a piezoelectric body with a rigid support, in Contact Mechanics,
J. A. C. Martins and Manuel D. P. Monteiro
Marques (Eds.), Kluwer, Dordrecht, 2002, 347-354.
MathSciNet
- G. Duvaut and J. L. Lions,
Les inéquations en mécanique et
en physique}, Dunod, Paris, 1972.
MathSciNet
- El-H. Essoufi and M. Kabbaj,
Existence of solutions of a dynamic
Signorini's problem with non local friction for viscoelastic
piezoelectric materials, Bull. Math. Soc. Sci. Math.
Roumanie (N.S.)} 48(96) (2005), 181-195.
MathSciNet
- T. Ikeda,
Fundamentals of Piezoelectricity, Oxford
University Press, Oxford, 1990.
- I. R. Ionescu and Q-L. Nguyen,
Dynamic contact problems with slip-dependent
friction in viscoelasticity, Int. J. Math. Comput. Sci. 12
(2002), 71-80.
MathSciNet
- M. Kabbaj and El-H. Essoufi,
Frictional contact problem in dynamic
electroelasticity,
Glas. Mat. Ser. III 43(63) (2008), 137-158.
MathSciNet
CrossRef
- F. Maceri and P. Bisegna,
The unilateral frictionless contact of
a piezoelectric body with a rigid support, Math. Comput.
Modelling 28 (1998), 19-28.
MathSciNet
CrossRef
- R. D. Mindlin,
Polarisation gradient in elastic dielectrics,
Int. J. Solids Structures 4, (1968), 637-663.
CrossRef
- R. D. Mindlin,
Continuum and lattice theories of influence of
electromechanical coupling on capacitance of thin dielectric films,
Int. J. Solids Structures 4 (1969), 1197-1208.
CrossRef
- R. D. Mindlin,
Elasticity, piezoelasticity and crystal lattice
dynamics, J. Elasticity 4 (1972), 217-280.
CrossRef
- M. Sofonea and El-H. Essoufi,
A piezoelectric contact
problem with slip dependent coefficient of friction, Math. Model. Anal. 9 (2004),
229-242.
MathSciNet
- M. Sofonea and El-H. Essoufi,
Quasistatic frictional contact of a viscoelastic
piezoelectric body, Adv. Math. Sci. Appl. 14 (2004),
613-631.
MathSciNet
- B. Tengiz and G. Tengiz,
Some dynamic problems of the theory of
electroelasticity, Mem. Differential Equations Math. Phys. 10 (1997), 1-53.
MathSciNet
- R. A. Toupin,
The elastic dielectrics, J. Rational Mech. Anal. 5 (1956), 849-915.
MathSciNet
- R. A. Toupin,
A dynamical theory of elastic dielectrics,
Internat. J. Engrg. Sci. 1 (1963), 101-126.
MathSciNet
CrossRef
Glasnik Matematicki Home Page