Glasnik Matematicki, Vol. 45, No.1 (2010), 109-124.

A QUASISTATIC FRICTIONAL CONTACT PROBLEM WITH NORMAL COMPLIANCE AND FINITE PENETRATION FOR ELASTIC MATERIALS

Arezki Touzaline

Laboratoire de Systèmes Dynamiques, Faculté de Mathématiques, Université des Sciences et de la Technologie Houari Boumediene, BP 32 EL ALIA, Bab Ezzouar, 16111, Algérie
e-mail: ttouzaline@yahoo.fr


Abstract.   We consider a quasistatic unilateral contact problem with finite penetration between an elastic body and an obstacle, say a foundation. The constitutive law is assumed to be nonlinear and the contact is modelled with normal compliance associated to a version of Coulomb's law of dry friction. Under a smallness assumption on the contact functions, we establish the existence of a weak solution to the problem. The proofs are based on arguments of time-dicretization, compactness and lower semicontinuity.

2000 Mathematics Subject Classification.   35J85, 47J20, 74M10, 74M15.

Key words and phrases.   Elastic material, quasistatic process, frictional contact, incremental, normal compliance, Signorini condition, variational inequality, weak solution.


Full text (PDF) (free access)

DOI: 10.3336/gm.45.1.09


References:

  1. L.-E. Andersson, A quasistatic frictional problem with normal compliance, Nonlinear Anal. 16 (1991), 347-369.
    MathSciNet     CrossRef

  2. L.-E. Andersson, Existence results for quasistatic contact problems with Coulomb friction, Appl. Math. Optim. 42 (2000), 169-202.
    MathSciNet     CrossRef

  3. Y. Ayyad and M. Sofonea, Analysis of two dynamic frictionless contact problems for elastic-visco-plastic materials, Electron. J. Differential Equations 2007, No. 55, pp. 1-17.
    MathSciNet

  4. H. Brezis, Equations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble) 18 (1968), 115-175.
    MathSciNet     Numdam

  5. M. Cocou, E. Pratt and M. Raous, Formulation and approximation of quasistatic frictional contact, Internat. J. Engrg. Sci. 34 (1996), 783-798.
    MathSciNet     CrossRef

  6. S. Drabla and M Sofonea, Analysis of a Signorini problem with friction, IMA J. Appl. Math. 63 (1999), 113-130.
    MathSciNet     CrossRef

  7. G. Duvaut, Equilibre d'un solide élastique avec contact unilatéral et frottement de Coulomb, C. R. Acad. Sci. Paris Sér. A 290 (1980), 263-265.
    MathSciNet

  8. G. Duvaut and J. L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972.
    MathSciNet

  9. W. Han and M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity. Studies in advanced Mathematics 30, Americal Mathematical Society and International Press, Somerville, 2002.
    MathSciNet

  10. J. Jarusek and M. Sofonea, On the solvability of dynamic elastic-visco-plastic contact problems, ZAMM Z. Angew. Math. Mech. 88 (2008), 3-22.
    MathSciNet     CrossRef

  11. N. Kikuchi and T. J. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods, SIAM, Philadelphia, 1988.
    MathSciNet

  12. A. Klarbring, A. Mikelic and M. Shillor, A global existence result for the quasistatic problem with normal compliance, Internat. Ser. Numer. Math. 101, Birkhäuser Verlag, Basel, 85-111, 1991.
    MathSciNet

  13. M. Raous, M. Jean and J. J. Moreau, eds., Contact Mechanics, Plenum Press, New York, 1995.

  14. R. Rocca, Existence of a solution for a quasistatic problem of unilateral contact with local friction, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 1253-1258.
    MathSciNet     CrossRef

  15. M. Rochdi, M. Schillor and M. Sofonea, Quasistatic viscoelastic contact with normal compliance and friction, J. Elasticity 51 (1998), 105-126.
    MathSciNet     CrossRef

  16. A. Touzaline and D. J. Teniou, A quasistatic unilateral contact problem problem with friction for nonlinear elastic materials, Math. Model. Anal. 12 (2007), 497-514.
    MathSciNet     CrossRef


Glasnik Matematicki Home Page