Glasnik Matematicki, Vol. 45, No.1 (2010), 109-124.
A QUASISTATIC FRICTIONAL CONTACT PROBLEM
WITH NORMAL COMPLIANCE AND FINITE PENETRATION FOR ELASTIC MATERIALS
Arezki Touzaline
Laboratoire de Systèmes Dynamiques, Faculté de Mathématiques,
Université des Sciences et de la Technologie Houari Boumediene, BP 32 EL ALIA, Bab Ezzouar, 16111,
Algérie
e-mail: ttouzaline@yahoo.fr
Abstract. We consider a quasistatic unilateral contact problem with finite penetration
between an elastic body and an obstacle, say a foundation. The constitutive
law is assumed to be nonlinear and the contact is modelled with normal
compliance associated to a version of Coulomb's law of dry friction. Under a
smallness assumption on the contact functions, we establish the existence of
a weak solution to the problem. The proofs are based on arguments of
time-dicretization, compactness and lower semicontinuity.
2000 Mathematics Subject Classification.
35J85, 47J20, 74M10, 74M15.
Key words and phrases. Elastic material, quasistatic process,
frictional contact, incremental, normal compliance, Signorini condition,
variational inequality, weak solution.
Full text (PDF) (free access)
DOI: 10.3336/gm.45.1.09
References:
- L.-E. Andersson,
A quasistatic frictional problem with normal
compliance, Nonlinear Anal. 16 (1991), 347-369.
MathSciNet
CrossRef
- L.-E. Andersson,
Existence results for quasistatic contact
problems with Coulomb friction, Appl. Math. Optim. 42 (2000), 169-202.
MathSciNet
CrossRef
- Y. Ayyad and M. Sofonea,
Analysis of two dynamic frictionless
contact problems for elastic-visco-plastic materials, Electron. J. Differential Equations 2007,
No. 55, pp. 1-17.
MathSciNet
- H. Brezis,
Equations et inéquations non linéaires dans les espaces vectoriels en dualité,
Ann. Inst. Fourier (Grenoble) 18 (1968), 115-175.
MathSciNet
Numdam
- M. Cocou, E. Pratt and M. Raous,
Formulation and approximation
of quasistatic frictional contact, Internat. J. Engrg. Sci. 34 (1996), 783-798.
MathSciNet
CrossRef
- S. Drabla and M Sofonea,
Analysis of a Signorini problem with
friction, IMA J. Appl. Math. 63 (1999), 113-130.
MathSciNet
CrossRef
- G. Duvaut,
Equilibre d'un solide élastique avec contact unilatéral et frottement de Coulomb,
C. R. Acad. Sci. Paris Sér. A 290 (1980), 263-265.
MathSciNet
- G. Duvaut and J. L. Lions,
Les inéquations en mécanique
et en physique, Dunod, Paris, 1972.
MathSciNet
- W. Han and M. Sofonea,
Quasistatic contact problems in viscoelasticity and viscoplasticity.
Studies in advanced Mathematics 30, Americal Mathematical Society and International Press, Somerville, 2002.
MathSciNet
- J. Jarusek and M. Sofonea,
On the solvability
of dynamic elastic-visco-plastic contact problems, ZAMM Z. Angew. Math. Mech. 88 (2008), 3-22.
MathSciNet
CrossRef
- N. Kikuchi and T. J. Oden,
Contact problems in elasticity: a study of variational inequalities and finite element
methods, SIAM, Philadelphia, 1988.
MathSciNet
- A. Klarbring, A. Mikelic and M. Shillor,
A global existence result for the quasistatic problem with normal compliance,
Internat. Ser. Numer. Math. 101, Birkhäuser Verlag, Basel, 85-111, 1991.
MathSciNet
- M. Raous, M. Jean and J. J. Moreau, eds.,
Contact Mechanics, Plenum Press, New York, 1995.
- R. Rocca,
Existence of a solution for a quasistatic
problem of unilateral contact with local friction,
C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 1253-1258.
MathSciNet
CrossRef
- M. Rochdi, M. Schillor and M. Sofonea,
Quasistatic viscoelastic
contact with normal compliance and friction, J. Elasticity 51 (1998), 105-126.
MathSciNet
CrossRef
- A. Touzaline and D. J. Teniou,
A quasistatic unilateral
contact problem problem with friction for nonlinear elastic materials,
Math. Model. Anal. 12 (2007), 497-514.
MathSciNet
CrossRef
Glasnik Matematicki Home Page