Glasnik Matematicki, Vol. 45, No.1 (2010), 93-107.

COMPOSITION SERIES OF THE INDUCED REPRESENTATIONS OF SO(5) USING INTERTWINING OPERATORS

Ivan Matić

Department of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, 31 000 Osijek, Croatia
e-mail: imatic@mathos.hr


Abstract.   Let F be a p-adic field of characteristic zero. We determine the composition series of the induced representations of SO(5,F).

2000 Mathematics Subject Classification.   22E50.

Key words and phrases.   Representations of p-adic groups, admissible dual, composition series, intertwining operators.


Full text (PDF) (free access)

DOI: 10.3336/gm.45.1.08


References:

  1. A.-M. Aubert, Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d'un groupe réductif p-adique, Trans. Amer. Math. Soc. 347 (1995), 2179-2189.
    MathSciNet     CrossRef

  2. W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, preprint.

  3. M. Hanzer, The unitary dual of the {H}ermitian quaternionic group of split rank 2, Pacific J. Math. 226 (2006), 353-388.
    MathSciNet     CrossRef

  4. M. Hanzer and G. Muic, On an algebraic approach to the Zelevinsky classification for classical p-adic groups, J. Algebra 320 (2008), 3206-3231.
    MathSciNet     CrossRef

  5. C. D. Keys, On the decomposition of reducible principal series representations of p-adic Chevalley groups, Pacific J. Math. 101 (1982), 351-388.
    MathSciNet

  6. I. Matic, The unitary dual of p-adic SO(5,F), Proc. Amer. Math. Soc. 138 (2010), 759-767.
    MathSciNet     CrossRef

  7. G. Muic, The unitary dual of p-adic G2, Duke Math. J. 90 (1997), 465-493.
    MathSciNet     CrossRef

  8. G. Muic, A geometric construction of intertwining operators for reductive p-adic groups, Manuscripta Math. 125 (2008), 241-272.
    MathSciNet     CrossRef

  9. P. J. Sally, Jr. and M. Tadic, Induced representations and classifications for GSp(2,F) and Sp(2,F), Mém. Soc. Math. France (N.S.) 52 (1993), 75-133.
    MathSciNet

  10. F. Shahidi, A proof of Langlands' conjecture on Plancherel measures; complementary series for p-adic groups, Ann. of Math. (2) 132 (1990), 273-330.
    MathSciNet     CrossRef

  11. F. Shahidi, Twisted endoscopy and reducibility of induced representations for p-adic groups, Duke Math. J. 66 (1992), 1-41.
    MathSciNet     CrossRef

  12. T. A. Springer, Reductive groups, in Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, 1979, 3-27.
    MathSciNet

  13. M. Tadic, Representations of p-adic symplectic groups, Compositio Math. 90 (1994), 123-181.
    MathSciNet     Numdam

  14. M. Tadic, On reducibility of parabolic induction, Israel J. Math. 107 (1998), 29-91.
    MathSciNet     CrossRef


Glasnik Matematicki Home Page