Glasnik Matematicki, Vol. 45, No.1 (2010), 55-62.
CHARACTERIZATIONS OF FINITE ABELIAN AND
MINIMAL NONABELIAN GROUPS
Yakov Berkovich
Department of Mathematics, University of Haifa,
Mount Carmel, Haifa 31905, Israel
e-mail: berkov@math.haifa.ac.il
Abstract. In this note we present the following characterizations of
finite abelian and minimal nonabelian groups:
(i) A group G is abelian if and only if G' = Φ(G)'.
(ii) A group G is either abelian or minimal nonabelian if and only if
Φ(G)' = H' for all maximal subgroups H of G.
We also prove a number of related results.
2000 Mathematics Subject Classification.
20D15.
Key words and phrases. Maximal subgroup, abelian, minimal nonabelian,
minimal nonnilpotent and Frobenius groups, Frattini subgroup, derived subgroup.
Full text (PDF) (free access)
DOI: 10.3336/gm.45.1.05
References:
- R. Baer,
Supersoluble immersion, Canad. J. Math. 11 (1959),
353-369.
MathSciNet
- Y. Berkovich,
Alternate proofs of some basic theorems of finite
group theory, Glas. Mat. Ser. III 40(60) (2005), 207-233.
MathSciNet
CrossRef
- Y. Berkovich,
Groups of Prime Power Order, Volume 1, Walter de Gruyter, Berlin, 2008.
MathSciNet
- Y. G. Berkovich and S. L. Gramm,
On finite Γ-quasi-nilpotent groups,
Mathematical analysis and its applications, Rostov Gos. Univ., Rostov-Don, 1969, 34-39 (Russian).
- Y. Berkovich and Z. Janko,
Groups of Prime Power Order, Volume 2,
Walter de Gruyter, Berlin, 2008.
MathSciNet
- Y. Berkovich and E. M. Zhmud,
Characters of Finite Groups. Part 1, Translations of Mathematical Monographs 172, AMS, Providence,
Rhode Island, 1998.
MathSciNet
- W. Gaschütz,
Über die Φ-Untergruppe endlicher Gruppen,
Math. Z. 58 (1953), 160-170.
MathSciNet
CrossRef
- Z. Janko,
On finite nonabelian 2-groups all of whose minimal nonabelian subgroups are of exponent 4,
J. Algebra 315 (2007), 801-808.
MathSciNet
CrossRef
Glasnik Matematicki Home Page