Glasnik Matematicki, Vol. 45, No.1 (2010), 31-41.

ON THE REDUCIBILITY OF CERTAIN QUADRINOMIALS

Jonas Jankauskas

Department of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania
e-mail: jonas.jankauskas@gmail.com


Abstract.   In 2007 West Coast Number Theory conference Walsh asked to determine all irreducible polynomials of the form P(x) = xi + xj + xk + 4 with integer exponents i > j > k > 0, such that for some positive integer l the polynomial P(xl) is reducible in Z[x]. In this paper we prove that such polynomials are quadrinomials x4m + x3m + x2m + 4, where m is an odd positive integer. In addition, Walsh asked for the examples of reducible quadrinomials xi + xj + xk + n, n > 4 with no linear or quadratic factors. We compute the examples of reducible polynomials of the form above with non-trivial factors and negative coefficient n.

2000 Mathematics Subject Classification.   12E05.

Key words and phrases.   Reducibility, quadrinomials.


Full text (PDF) (free access)

DOI: 10.3336/gm.45.1.03


References:

  1. M. Filaseta, On the factorization of polynomials with small Euclidean norm, In: Number theory in progress (Zakopane-Koscielisko, 1997), de Gruyter, Berlin, 1 (1999), 143-163.
    MathSciNet

  2. M. Filaseta, A. Granville and A. Schinzel, Irreducibility and greatest common divisor algorithms for sparse polynomials, In: Number Theory and Polynomials (ed. James McKee and Chris Smyth), LMS Lecture Note Series 352, Cambridge Univ. Press, 2008, 155-176.
    MathSciNet

  3. M. Filaseta, F. Luca, P. Stanica and R.G. Underwood, Two Diophantine approaches to the irreducibility of certain trinomials, Acta Arith. 128 (2007), 149-156.
    MathSciNet     CrossRef

  4. M. Filaseta and I. Solan, An extension of a theorem of Ljunggren, Math. Scand. 84 (1999), 5-10.
    MathSciNet

  5. M. Fried and A. Schinzel, Reducibility of quadrinomials, Acta Arith. 21 (1972), 153-171.
    MathSciNet

  6. A. T. Jonassen, On the irreducibility of the trinomials xm ± xn ± 4, Math. Scand. 21 (1967), 177-189.
    MathSciNet

  7. W. Ljunggren, On the reducibility of certain trinomials and quadrinomials, Math. Scand. 8 (1960), 65-70.
    MathSciNet

  8. W. H. Mills, The factorization of certain quadrinomials, Math. Scand. 57 (1985), 44-50.
    MathSciNet

  9. G. Myerson, Western Number Theory Problems, 17-19 Dec 2007. Available online at
    http://www.math.colostate.edu/~achter/wntc/problems/problems2007.pdf

  10. A. Schinzel, On the reducibility of polynomials and in particular of trinomials, Acta Arith. 11 (1965), 1-34.
    MathSciNet

  11. A. Schinzel, Reducibility of lacunary polynomials. I, Acta Arith. 16 (1969/1970), 123-159.
    MathSciNet

  12. A. Schinzel, Polynomials with special regard to reducibility, Encyclopedia of Mathematics and its applications 77, Cambridge Univ. Press, 2000.
    MathSciNet     CrossRef

  13. E. S. Selmer, On the irreducibility of certain trinomials, Math. Scand. 4 (1956), 287-302.
    MathSciNet


Glasnik Matematicki Home Page