Glasnik Matematicki, Vol. 45, No.1 (2010), 15-29.
THE NUMBER OF DIOPHANTINE QUINTUPLES
Yasutsugu Fujita
Department of Mathematics, College of Industrial Technology,
Nihon University, 2-11-1 Shin-ei, Narashino, Chiba, Japan
e-mail: fujita.yasutsugu@nihon-u.ac.jp
Abstract. A set {a1, ... ,am}
of m distinct positive integers is called a Diophantine
m-tuple if aiaj+1 is a perfect square for
all i, j with 1 ≤ i < j ≤ m.
It is known that there does not exist a Diophantine sextuple and that there exist only finitely
many Diophantine quintuples.
In this paper, we first show that for a fixed Diophantine triple
{a,b,c} with a < b < c, the number
of Diophantine quintuples {a,b,c,d,e} with
c < d < e
is at most four.
Using this result, we further show that the number of Diophantine quintuples
is less than 10276, which improves the bound
101930 due to Dujella.
2000 Mathematics Subject Classification.
11D09, 11J68, 11J86.
Key words and phrases. Simultaneous Diophantine equations, Diophantine tuples.
Full text (PDF) (free access)
DOI: 10.3336/gm.45.1.02
References:
- J. Arkin, V. E. Hoggatt and E. G. Strauss,
On Euler's solution of a problem of Diophantus,
Fibonacci Quart. 17 (1979), 333-339.
MathSciNet
- A. Baker and H. Davenport,
The equations 3x2-2=y2 and
8x2-7=z2,
Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
MathSciNet
CrossRef
- M. A. Bennett, M. Cipu, M. Mignotte and R. Okazaki,
On the number of solutions of simultaneous Pell equations II,
Acta Arith. 122 (2006), 407-417.
MathSciNet
CrossRef
- Y. Bugeaud, A. Dujella and M. Mignotte,
On the family of Diophantine triples {k-1,k+1,16k3-4k},
Glasg. Math. J. 49 (2007), 333-344.
MathSciNet
CrossRef
- A. Dujella,
The problem of the extension of a parametric family of Diophantine triples,
Publ. Math. Debrecen 51 (1997), 311-322.
MathSciNet
- A. Dujella,
A proof of the Hoggatt-Bergum conjecture,
Proc. Amer. Math. Soc. 127 (1999), 1999-2005.
MathSciNet
CrossRef
- A. Dujella,
An absolute bound for the size of Diophantine m-tuples,
J. Number Theory 89 (2001), 126-150.
MathSciNet
CrossRef
- A. Dujella,
There are only finitely many Diophantine quintuples,
J. Reine Angew. Math. 566 (2004), 183-214.
MathSciNet
CrossRef
- A. Dujella,
On the number of Diophantine m-tuples,
Ramanujan J. 15 (2008), 37-46.
MathSciNet
CrossRef
- A. Dujella and A. Pethö,
A generalization of a theorem of Baker and Davenport,
Quart. J. Math. Oxford Ser. (2) 49 (1998), 291-306.
MathSciNet
CrossRef
- Y. Fujita,
The extensibility of Diophantine pairs {k-1,k+1},
J. Number Theory 128 (2008), 322-353.
MathSciNet
CrossRef
- Y. Fujita,
Any Diophantine quintuple contains a regular Diophantine quadruple,
J. Number Theory 129 (2009), 1678-1697.
MathSciNet
CrossRef
- K. S. Kedlaya,
Solving constrained Pell equations,
Math. Comp. 67 (1998), 833-842.
MathSciNet
CrossRef
- E. M. Matveev,
An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II,
Izv. Math. 64 (2000), 1217-1269.
MathSciNet
CrossRef
Glasnik Matematicki Home Page