Glasnik Matematicki, Vol. 45, No.1 (2010), 1-14.
GRAPHS AND SYMMETRIC DESIGNS CORRESPONDING
TO DIFFERENCE SETS IN GROUPS OF ORDER 96
Snježana Braić, Anka Golemac, Joško Mandić and Tanja Vučičić
University of Split, Faculty of Science and Mathematics,
Teslina 12/III, 21000 Split, Croatia
e-mail: sbraic@pmfst.hr
e-mail: golemac@pmfst.hr
e-mail: majo@pmfst.hr
e-mail: vucicic@pmfst.hr
Abstract. Using the list of 2607 so far constructed (96,20,4) difference sets as a
source, we checked the related symmetric designs upon isomorphism and analyzed
their full automorphism groups. New (96,20,4,4) and (96,19,2,4) regular
partial difference sets are constructed, together with the corresponding
strongly regular graphs.
2000 Mathematics Subject Classification.
05B05, 05B10, 05E30.
Key words and phrases. Difference set, partial difference set, Cayley graph, symmetric design.
Full text (PDF) (free access)
DOI: 10.3336/gm.45.1.01
References:
- O. A. AbuGhneim,
On nonabelian McFarland difference sets,
Proceedings of the Thirty-Fifth Southeastern International Conference on
Combinatorics, Graph Theory and Computing, Congr. Numer. 168 (2004), 159-175.
MathSciNet
- O. A. AbuGhneim,
Nonabelian McFarland and Menon-Hadamard difference sets, Ph.D. Thesis, Central Michigan University,
Mount Pleasant, Michigan, 2005.
- O. A. AbuGhneim and K. W. Smith,
Nonabelian groups with
(96,20,4) difference sets, Electron. J. Combin. 14 (2007), # R8.
MathSciNet
- K. T. Arasu, J. A. Davis, J. Jedwab, S. L. Ma and R. McFarland,
Exponent bounds for a family of abelian difference sets, Groups, Difference
Sets, and the Monster, (Eds. K. T. Arasu, J. F. Dillon, K. Harada, S. K. Sehgal,
R. L. Solomon), 145-156, de Gruyter, Berlin-New York, 1996.
MathSciNet
- K. T. Arasu and S. K. Sehgal,
Some new difference sets, J.
Combin. Theory Ser. A 69 (1995), 170-172.
MathSciNet
CrossRef
- T. Beth, D. Jungnickel and H. Lenz,
Design theory,
Cambridge University Press, 1999.
MathSciNet
- A. E. Brouwer, J. H. Koolen and M. H. Klin,
A Root Graph That
is Locally the Line Graph of the Petersen Graph, Discrete Math.
264 (2003), 13-24.
MathSciNet
CrossRef
- J. F. Dillon,
Variations on a scheme of McFarland for
noncyclic difference sets, J. Combin. Theory Ser. A 40 (1985), 9-21.
MathSciNet
CrossRef
- The GAP Group,
GAP-groups, algorithms and programming, version 4.4;
Aachen, St Andrews, 2006.
http://www.gap-system.org
- N. C. Fiala and W. H. Haemers,
5-chromatic strongly
regular graphs, Discrete Math. 306 (2006), 3083-3096.
MathSciNet
CrossRef
- A. Golemac, T. Vucicic and J. Mandic,
One (96,20,4) symmetric design and related nonabelian difference sets,
Des. Codes Cryptogr. 37 (2005), 5-13.
MathSciNet
CrossRef
- A. Golemac, J. Mandic and T. Vucicic,
On the
Existence of Difference Sets in Groups of Order 96, Discrete Math. 307
(2007), 54-68.
MathSciNet
CrossRef
- A. Golemac, J. Mandic and T. Vucicic,
New regular
partial difference sets and strongly regular graphs with parameters
(96,20,4,4) and (96,19,2,4), Electron. J. Combin. 13
(2006), # R88, 10 pp.
MathSciNet
- A. Golemac and T. Vucicic,
New difference sets in
nonabelian groups of order 100, J. Combin. Des. 9 (2001), 424-434.
MathSciNet
CrossRef
- Z. Janko,
Coset enumeration in groups and constructions of
symmetric designs, Combinatorics '90, Elsevier Science Publishers, 1992, 275-277.
MathSciNet
- M. H. Klin,
Strongly regular Cayley graphs on 96 vertices,
J. Geometry 65 (1999), 15-16.
- S. L. Ma,
Partial Difference Sets, Discrete Math. 52 (1984), 75-89.
MathSciNet
CrossRef
- S. L. Ma,
A survey of partial difference sets, Des. Codes Cryptogr. 4 (1994), 221-261.
MathSciNet
CrossRef
- R. L. McFarland,
A family of difference sets in non-cyclic
groups, J. Combinatorial Theory Ser. A 15 (1973), 1-10.
MathSciNet
CrossRef
- K. W. Smith,
Difference sets web page,
http://www.cst.cmich.edu/users/smith1kw/MathResearch/DifferenceSets/DifSets.htm.
- L. H. Soicher,
The DESIGN package for GAP, Version 1.3, 2006,
http://designtheory.org/software/gap_design/.
- L. H.~Soicher,
The GRAPE package for GAP, Version 4.3, 2006,
http://www.maths.qmul.ac.uk/~leonard/grape/.
- V. Tonchev,
private communication (via Z. Janko).
- R. J. Turyn,
Character sums and difference sets, Pacific J. Math. 15 (1965), 319-346.
MathSciNet
- T. Vucicic,
New symmetric designs and nonabelian
difference sets with parameters (100,45,20), J. Combin. Des. 8 (2000), 291-299.
MathSciNet
CrossRef
Glasnik Matematicki Home Page