Glasnik Matematicki, Vol. 45, No.1 (2010), 1-14.

GRAPHS AND SYMMETRIC DESIGNS CORRESPONDING TO DIFFERENCE SETS IN GROUPS OF ORDER 96

Snježana Braić, Anka Golemac, Joško Mandić and Tanja Vučičić

University of Split, Faculty of Science and Mathematics, Teslina 12/III, 21000 Split, Croatia
e-mail: sbraic@pmfst.hr
e-mail: golemac@pmfst.hr
e-mail: majo@pmfst.hr
e-mail: vucicic@pmfst.hr


Abstract.   Using the list of 2607 so far constructed (96,20,4) difference sets as a source, we checked the related symmetric designs upon isomorphism and analyzed their full automorphism groups. New (96,20,4,4) and (96,19,2,4) regular partial difference sets are constructed, together with the corresponding strongly regular graphs.

2000 Mathematics Subject Classification.   05B05, 05B10, 05E30.

Key words and phrases.   Difference set, partial difference set, Cayley graph, symmetric design.


Full text (PDF) (free access)

DOI: 10.3336/gm.45.1.01


References:

  1. O. A. AbuGhneim, On nonabelian McFarland difference sets, Proceedings of the Thirty-Fifth Southeastern International Conference on Combinatorics, Graph Theory and Computing, Congr. Numer. 168 (2004), 159-175.
    MathSciNet

  2. O. A. AbuGhneim, Nonabelian McFarland and Menon-Hadamard difference sets, Ph.D. Thesis, Central Michigan University, Mount Pleasant, Michigan, 2005.

  3. O. A. AbuGhneim and K. W. Smith, Nonabelian groups with (96,20,4) difference sets, Electron. J. Combin. 14 (2007), # R8.
    MathSciNet

  4. K. T. Arasu, J. A. Davis, J. Jedwab, S. L. Ma and R. McFarland, Exponent bounds for a family of abelian difference sets, Groups, Difference Sets, and the Monster, (Eds. K. T. Arasu, J. F. Dillon, K. Harada, S. K. Sehgal, R. L. Solomon), 145-156, de Gruyter, Berlin-New York, 1996.
    MathSciNet

  5. K. T. Arasu and S. K. Sehgal, Some new difference sets, J. Combin. Theory Ser. A 69 (1995), 170-172.
    MathSciNet     CrossRef

  6. T. Beth, D. Jungnickel and H. Lenz, Design theory, Cambridge University Press, 1999.
    MathSciNet

  7. A. E. Brouwer, J. H. Koolen and M. H. Klin, A Root Graph That is Locally the Line Graph of the Petersen Graph, Discrete Math. 264 (2003), 13-24.
    MathSciNet     CrossRef

  8. J. F. Dillon, Variations on a scheme of McFarland for noncyclic difference sets, J. Combin. Theory Ser. A 40 (1985), 9-21.
    MathSciNet     CrossRef

  9. The GAP Group, GAP-groups, algorithms and programming, version 4.4; Aachen, St Andrews, 2006.
    http://www.gap-system.org

  10. N. C. Fiala and W. H. Haemers, 5-chromatic strongly regular graphs, Discrete Math. 306 (2006), 3083-3096.
    MathSciNet     CrossRef

  11. A. Golemac, T. Vucicic and J. Mandic, One (96,20,4) symmetric design and related nonabelian difference sets, Des. Codes Cryptogr. 37 (2005), 5-13.
    MathSciNet     CrossRef

  12. A. Golemac, J. Mandic and T. Vucicic, On the Existence of Difference Sets in Groups of Order 96, Discrete Math. 307 (2007), 54-68.
    MathSciNet     CrossRef

  13. A. Golemac, J. Mandic and T. Vucicic, New regular partial difference sets and strongly regular graphs with parameters (96,20,4,4) and (96,19,2,4), Electron. J. Combin. 13 (2006), # R88, 10 pp.
    MathSciNet

  14. A. Golemac and T. Vucicic, New difference sets in nonabelian groups of order 100, J. Combin. Des. 9 (2001), 424-434.
    MathSciNet     CrossRef

  15. Z. Janko, Coset enumeration in groups and constructions of symmetric designs, Combinatorics '90, Elsevier Science Publishers, 1992, 275-277.
    MathSciNet

  16. M. H. Klin, Strongly regular Cayley graphs on 96 vertices, J. Geometry 65 (1999), 15-16.

  17. S. L. Ma, Partial Difference Sets, Discrete Math. 52 (1984), 75-89.
    MathSciNet     CrossRef

  18. S. L. Ma, A survey of partial difference sets, Des. Codes Cryptogr. 4 (1994), 221-261.
    MathSciNet     CrossRef

  19. R. L. McFarland, A family of difference sets in non-cyclic groups, J. Combinatorial Theory Ser. A 15 (1973), 1-10.
    MathSciNet     CrossRef

  20. K. W. Smith, Difference sets web page,
    http://www.cst.cmich.edu/users/smith1kw/MathResearch/DifferenceSets/DifSets.htm.

  21. L. H. Soicher, The DESIGN package for GAP, Version 1.3, 2006,
    http://designtheory.org/software/gap_design/.

  22. L. H.~Soicher, The GRAPE package for GAP, Version 4.3, 2006,
    http://www.maths.qmul.ac.uk/~leonard/grape/.

  23. V. Tonchev, private communication (via Z. Janko).

  24. R. J. Turyn, Character sums and difference sets, Pacific J. Math. 15 (1965), 319-346.
    MathSciNet

  25. T. Vucicic, New symmetric designs and nonabelian difference sets with parameters (100,45,20), J. Combin. Des. 8 (2000), 291-299.
    MathSciNet     CrossRef


Glasnik Matematicki Home Page