Glasnik Matematicki, Vol. 44, No.2 (2009), 499-531.

METRIZATION OF PRO-MORPHISM SETS

Nikica Uglešić

University of Zadar, Pavlinovićeva bb, 23000 Zadar, Croatia
e-mail: nuglesic@unizd.hr


Abstract.   Every pair of inverse systems X, Y in a category A, where Y is cofinite, admits a complete (ultra)metric structure on the set pro-A(X,Y). The corresponding hom-bifunctor is not, generally, an internal Hom. However, there exists a subcategory of pro-A, containing tow-A, for which the hom-bifunctor is an invariant Hom into the category of complete metric spaces. Application to the sets tow-HcANR(X,Y) yields several new interesting results concerning Borsuk's quasi-equivalence.

2000 Mathematics Subject Classification.   55P55, 54E50.

Key words and phrases.   Pro-category, shape, quasi-equivalence, semi-stability, complete metric, compactum, FANR, ANR.


Full text (PDF) (free access)

DOI: 10.3336/gm.44.2.15


References:

  1. K. Borsuk, Theory of Shape, Monografie Matematyczne 59, PWN-Polish Scientific Publishers, Warsaw, 1975.
    MathSciNet

  2. K. Borsuk, Some quantitative properties of shapes, Fund. Math. 93 (1976), 197-212.
    MathSciNet

  3. E. Cuchillo-Ibanez, M. Moron and F. R. Ruiz del Portal, Ultrametric spaces, valued and semivalued groups arising from the theorry of shape, preprint.

  4. E. Cuchillo-Ibanez, M. Moron, F. R. Ruiz del Portal and J. M. R. Sanjurjo, A topology for the sets of shape morphisms, Topology. Appl. 94 (1999), 51-60.
    MathSciNet     CrossRef

  5. B. Cervar and N. Uglesic, Category descriptions of the Sn- and S- equivalence, Math. Commun. 13 (2008), 1-19.
    MathSciNet

  6. J. Dydak and A. Trybulec, On regularly movable compacta, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 23 (1975), 907-909.
    MathSciNet

  7. D. A. Edwards and R. Geoghegan, Shapes of complexes, ends of manifolds, homotopy limits and the Wall obstruction, Ann. of Math. (2) 101 (1975), 521-535, Correction Ibid. 104 (1976), 389.
    MathSciNet     CrossRef

  8. H. Herlich and G. E. Strecker, Category theory: an introduction, Allyn and Bacon Inc., Boston, 1973.
    MathSciNet

  9. A. Kadlof, N. Koceic Bilan and N. Uglesic, Borsuk's quasi-equivalence is not transitive, Fund. Math. 197 (2007), 215-227.
    MathSciNet     CrossRef

  10. I. Ivansic, Regular movability is not a hereditary shape property, Bull. Pol. Acad. Sci. Math. 41 (1993), 109-111.
    MathSciNet

  11. J. Keesling and S. Mardesic, A shape fibration with fibres of different shape, Pacific J. Math. 84 (1979), 319-331.
    MathSciNet

  12. S. Mardesic, Comparing fibres in a shape fibration, Glasnik Mat. Ser. III 13(33) (1978), 317-333.
    MathSciNet

  13. S. Mardesic and J. Segal, Shape Theory. The inverse system approach, North-Holland Publishing Co., Amsterdam-New York, 1982.
    MathSciNet

  14. S. Mardesic and N. Uglesic, A category whose isomorphisms induce an equivalence relation coarser than shape, Topology Appl. 153 (2005) 448-463.
    MathSciNet     CrossRef

  15. A. Martinez-Perez and M. A. Moron, Inverse sequences, rooted trees and their end spaces, preprint.

  16. M. A. Moron and F. R. Ruiz del Portal, Ultrametrics and infinite dimensional Whitehead theorems in shape theory, Manuscripta Math. 89 (1996), 325-333.
    MathSciNet     CrossRef

  17. M. A. Moron and F. R. Ruiz del Portal, Shape as a Cantor completion proces, Math. Z. 225 (1997), 67-86.
    MathSciNet     CrossRef

  18. M. A. Moron and F. R. Ruiz del Portal, On weak shape equivalences, Topology Appl. 92 (1999), 225-236.
    MathSciNet     CrossRef

  19. M. A. Moron, F. R. Ruiz del Portal and J. M. R. Sanjurjo, Shape invariance of N-compactifications, Topology Appl. 56 (1994), 63-71.
    MathSciNet     CrossRef

  20. J. M. R. Sanjurjo, On quasi-domination of compacta, Colloq. Math. 48 (1984), 213-217.
    MathSciNet

  21. A. Trybulec, On shapes of movable curves, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys. 21 (1973), 727-733.
    MathSciNet

  22. N. Uglesic, A note on the Borsuk quasi-equivalence, submitted.

  23. N. Uglesic and B. Cervar, The Sn-equivalence of compacta, Glas. Mat. Ser. III 42(62) (2007), 195-211.
    MathSciNet     CrossRef

  24. C. T. C. Wall, Finiteness conditions for CW-complexes, Ann. of Math. (2) 81 (1965), 55-69.
    MathSciNet     CrossRef


Glasnik Matematicki Home Page