Glasnik Matematicki, Vol. 44, No.2 (2009), 499-531.
METRIZATION OF PRO-MORPHISM SETS
Nikica Uglešić
University of Zadar, Pavlinovićeva bb, 23000 Zadar, Croatia
e-mail: nuglesic@unizd.hr
Abstract. Every pair of inverse systems X, Y in a category
A, where Y is cofinite, admits a complete
(ultra)metric structure on the set
pro-A(X,Y).
The corresponding hom-bifunctor is not, generally, an
internal Hom. However, there exists a subcategory of
pro-A,
containing
tow-A,
for which the hom-bifunctor is an invariant
Hom into the category of complete metric spaces. Application to the sets
tow-HcANR(X,Y) yields several new interesting
results concerning Borsuk's quasi-equivalence.
2000 Mathematics Subject Classification.
55P55, 54E50.
Key words and phrases. Pro-category, shape, quasi-equivalence, semi-stability, complete metric,
compactum, FANR, ANR.
Full text (PDF) (free access)
DOI: 10.3336/gm.44.2.15
References:
- K. Borsuk,
Theory of Shape, Monografie
Matematyczne 59, PWN-Polish Scientific Publishers, Warsaw, 1975.
MathSciNet
- K. Borsuk,
Some quantitative properties of
shapes, Fund. Math. 93 (1976), 197-212.
MathSciNet
- E. Cuchillo-Ibanez, M. Moron and F. R. Ruiz del Portal,
Ultrametric spaces, valued and semivalued groups arising from the
theorry of shape, preprint.
- E. Cuchillo-Ibanez, M. Moron, F. R. Ruiz del Portal and J. M. R. Sanjurjo,
A topology for the sets of shape morphisms,
Topology. Appl. 94 (1999), 51-60.
MathSciNet
CrossRef
- B. Cervar and N. Uglesic,
Category
descriptions of the Sn- and S- equivalence,
Math. Commun. 13 (2008), 1-19.
MathSciNet
- J. Dydak and A. Trybulec,
On regularly movable
compacta, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 23 (1975), 907-909.
MathSciNet
- D. A. Edwards and R. Geoghegan,
Shapes of complexes, ends
of manifolds, homotopy limits and the Wall obstruction, Ann. of Math. (2)
101 (1975), 521-535, Correction Ibid. 104 (1976), 389.
MathSciNet
CrossRef
- H. Herlich and G. E. Strecker,
Category theory: an
introduction, Allyn and Bacon Inc., Boston, 1973.
MathSciNet
- A. Kadlof, N. Koceic Bilan and N. Uglesic,
Borsuk's quasi-equivalence is not transitive, Fund. Math.
197 (2007), 215-227.
MathSciNet
CrossRef
- I. Ivansic,
Regular movability is not a hereditary
shape property, Bull. Pol. Acad. Sci. Math. 41 (1993), 109-111.
MathSciNet
- J. Keesling and S. Mardesic,
A shape fibration
with fibres of different shape, Pacific J. Math. 84 (1979), 319-331.
MathSciNet
- S. Mardesic,
Comparing fibres in a shape
fibration, Glasnik Mat. Ser. III 13(33) (1978), 317-333.
MathSciNet
- S. Mardesic and J. Segal,
Shape Theory. The inverse system approach, North-Holland Publishing Co., Amsterdam-New York, 1982.
MathSciNet
- S. Mardesic and N. Uglesic,
A category
whose isomorphisms induce an equivalence relation coarser than shape,
Topology Appl. 153 (2005) 448-463.
MathSciNet
CrossRef
- A. Martinez-Perez and M. A. Moron,
Inverse sequences,
rooted trees and their end spaces, preprint.
- M. A. Moron and F. R. Ruiz del Portal,
Ultrametrics
and infinite dimensional Whitehead theorems in shape theory, Manuscripta
Math. 89 (1996), 325-333.
MathSciNet
CrossRef
- M. A. Moron and F. R. Ruiz del Portal,
Shape as a
Cantor completion proces, Math. Z. 225 (1997), 67-86.
MathSciNet
CrossRef
- M. A. Moron and F. R. Ruiz del Portal,
On weak shape
equivalences, Topology Appl. 92 (1999), 225-236.
MathSciNet
CrossRef
- M. A. Moron, F. R. Ruiz del Portal and J. M. R. Sanjurjo,
Shape invariance of N-compactifications, Topology
Appl. 56 (1994), 63-71.
MathSciNet
CrossRef
- J. M. R. Sanjurjo,
On quasi-domination of compacta, Colloq.
Math. 48 (1984), 213-217.
MathSciNet
- A. Trybulec,
On shapes of movable curves, Bull. Acad.
Polon. Sci., Ser. Sci. Math. Astronom. Phys. 21 (1973), 727-733.
MathSciNet
- N. Uglesic,
A note on the Borsuk
quasi-equivalence, submitted.
- N. Uglesic and B. Cervar,
The Sn-equivalence
of compacta,
Glas. Mat. Ser. III 42(62) (2007), 195-211.
MathSciNet
CrossRef
- C. T. C. Wall,
Finiteness conditions for CW-complexes,
Ann. of Math. (2) 81 (1965), 55-69.
MathSciNet
CrossRef
Glasnik Matematicki Home Page