Glasnik Matematicki, Vol. 44, No.2 (2009), 479-492.
ON n-FOLD HYPERSPACES OF CONTINUA
Sergio Macias
Instituto de Matemáticas, Universidad Nacional Autónoma de México,
Circuito Exterior, Ciudad Universitaria, México D. F., C. P. 04510, México
e-mail: macias@servidor.unam.mx
Abstract. We continue our study of n-fold hyperspaces and
n-fold hyperspace suspensions. We present more
properties of these hyperspaces.
2000 Mathematics Subject Classification.
54B20.
Key words and phrases. Absolute retract, cone, continuum,
n-fold hyperspace, n-fold hyperspace suspension,
n-fold symmetric product, retract, suspension, terminal continuum.
Full text (PDF) (free access)
DOI: 10.3336/gm.44.2.13
References:
- J. J. Charatonik, A. Illanes, S. Macias,
Induced mappings on the
hyperspace Cn(X) of a continuum X,
Houston J. Math. 28 (2002), 781-805.
MathSciNet
- D. Curtis and N. T. Nhu,
Hyperspaces of finite subsets which are homeomorphic
to 0-dimensional
linear metric spaces, Topology Appl. 19 (1985), 251-260.
MathSciNet
CrossRef
- C. H. Dowker,
Mapping theorems for noncompact spaces,
Amer. J. Math. 68 (1947), 200-242.
MathSciNet
CrossRef
- J. Dugundji,
Topology, Allyn and Bacon, Inc., Boston, 1966.
MathSciNet
- C. Eberhart and S. B. Nadler, Jr.,
The dimension of certain hyperspaces,
Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 1027-1034.
MathSciNet
- C. Eberhart and S. B. Nadler, Jr.,
Hyperspaces of cones and fans,
Proc. Amer. Math. Soc. 77 (1979), 279-288.
MathSciNet
CrossRef
- R. Escobedo, M. de J. López and S. Macias,
On the hyperspace suspension of a continuum, Topology Appl. 138 (2004), 109-124.
MathSciNet
CrossRef
- W. Hurewicz,
Sur la dimension des produits cartésiens, Ann. of Math. (2) 36 (1935), 194-197.
MathSciNet
CrossRef
- W. Hurewicz and H. Wallman,
Dimension theory, Princeton Univ. Press,
Princeton, 1941.
MathSciNet
- A. Illanes,
Multicoherence of symmetric products,
An. Inst. Mat. Univ. Nac. Autónoma México 25 (1985), 11-24.
MathSciNet
- K. Kuratowski,
Topology, Vol. 2, English transl., Academic Press, New York-London;
PWN, Warsaw, 1968.
MathSciNet
- M. Levin and Y. Sternfeld,
The space of subcontinua of a 2-dimensional
continuum is infinitely dimensional, Proc. Amer. Math. Soc. 125 (1997), 2771-2775.
MathSciNet
CrossRef
- S. Macias,
On symmetric products of continua, Topology Appl.
92 (1999), 173-182.
MathSciNet
CrossRef
- S. Macias,
On the hyperspaces Cn(X) of a continuum X,
Topology Appl. 109 (2001), 237-256.
MathSciNet
CrossRef
- S. Macias,
On the hyperspaces Cn(X) of a continuum X, II,
Topology Proc. 25 (2000), 255-276.
MathSciNet
- S. Macias,
On the n-fold hyperspace suspension of continua,
Topology Appl. 138 (2004), 125-138.
MathSciNet
CrossRef
- S. Macias,
Topics on continua, Pure and Applied Mathematics Series,
Vol. 275, Chapman & Hall/CRC, Taylor & Francis Group, Boca
Raton, London, New York, Singapore, 2005.
MathSciNet
- S. Macias,
On the n-fold
hyperspace suspension of continua, II,
Glasnik Mat. Ser. III 41(61) (2006), 335-343.
MathSciNet
CrossRef
- S. Macias and S. B. Nadler, Jr.,
n-fold hyperspaces, cones
and products, Topology Proc. 26 (2001/2002), 255-270.
MathSciNet
- S. Macias and S. B. Nadler, Jr.,
Absolute n-fold hyperspace suspensions,
Colloq. Math. 105 (2006), 221-231.
MathSciNet
CrossRef
- S. Macias and S. B. Nadler, Jr.,
Various types of local connectedness
in n-fold hyperspaces, Topology Appl. 54 (2007), 39-53.
MathSciNet
CrossRef
- J. van Mill,
Infinite-dimensional topology. Prerequisites and introduction, North-Holland Publishing Co., Amsterdam, 1989.
MathSciNet
- S. B. Nadler, Jr.,
Hyperspaces of sets. A text with research questions, Monographs and
Textbooks in Pure and Applied Mathematics 49, Marcel Dekker, Inc., New York-Basel, 1978.
MathSciNet
- S. B. Nadler, Jr.,
A fixed point theorem for hyperspace
suspensions, Houston J. Math. 5, (1979), 125-132.
MathSciNet
- S. B. Nadler, Jr.,
Continua whose hyperspace is a product,
Fund. Math. 108 (1980), 49-66.
MathSciNet
- S. B. Nadler, Jr.,
Continuum theory. An introduction,
Monographs and Textbooks in Pure and Applied Math. 158, Marcel Dekker, Inc., New York, 1992.
MathSciNet
- S. B. Nadler, Jr.,
Dimension theory: an introduction with
exercises, Aportaciones Matemáticas: Textos #18, Sociedad
Matemática Mexicana, México, 2002.
MathSciNet
- J. T. Rogers, Jr.,
Dimension of hyperspaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.
20 (1972), 177-179.
MathSciNet
Glasnik Matematicki Home Page