Glasnik Matematicki, Vol. 44, No.2 (2009), 457-478.

COMPACTIFICATIONS OF [0,∞) WITH UNIQUE HYPERSPACE Fn(X)

Alejandro Illanes and Jorge M. Martinez-Montejano

Universidad Nacional Autónoma de México, Instituto de Matemáticas, Circuito Exterior, Cd. Universitaria, México, 04510, D.F. Mexico
e-mail: illanes@matem.unam.mx
e-mail: jorge@matem.unam.mx


Abstract.   Given a metric continuum X, Fn(X) denotes the hyperspace of nonempty subsets of X with at most n elements. In this paper we show the following result. Suppose that X is a metric compactification of [0,∞), Y is a continuum and Fn(X) is homemorphic to Fn(Y). Then: (a) if n ≠ 3, then X is homeomorphic to Y, (b) if n = 3 and the remainder of X is an ANR, then X is homeomorphic to Y. The question if the result in (a) is valid for n = 3 remains open.

2000 Mathematics Subject Classification.   54B20,54F15.

Key words and phrases.   Compactification, continuum, hyperspace, ray, symmetric product, unique hyperspace.


Full text (PDF) (free access)

DOI: 10.3336/gm.44.2.12


References:

  1. G. Acosta, R. Hernández-Gutiérrez and V. Martinez-de-la-Vega, Dendrites and symmetric products, Glas. Mat. Ser. III 44(64) (2009), 195-210.
    MathSciNet     CrossRef

  2. R. Bott, On the third symmetric potency of S1, Fund. Math. 39 (1952), 264-268.
    MathSciNet

  3. E. Castaneda and A. Illanes, Finite graphs have unique symmetric products, Topology Appl. 153 (2006), 1434-1450.
    MathSciNet     CrossRef

  4. J. J. Charatonik and A. Illanes, Local Connectedness in Hyperspaces, Rocky Mountain J. Math. 36 (2006), 811-856.
    MathSciNet     CrossRef

  5. D. W. Curtis and N. T. Nhu, Hyperspaces of finite sets which are homemomorphic to aleph0-dimensional linear metric spaces, Topology Appl. 19 (1985), 251-260.
    MathSciNet     CrossRef

  6. V. Guillemin and A. Pollack, Differential Topology, Prentice-Hall, Inc., Englewood Cliff, 1974.
    MathSciNet

  7. D. Herrera-Carrasco, M. de J. López and F. Macias-Romero, Dendrites with unique symmetric products, Topology Proc. 34 (2009), 175-190.

  8. A. Illanes, Dendrites with unique hyperspace C2(X), II, Topology Proc. 34 (2009), 77-96.
    MathSciNet

  9. A. Illanes and S. B. Nadler, Jr., Hyperspaces. Fundamentals and recent advances, Monographs and Textbooks in Pure and Applied Mathematics 216, Marcel Dekker, Inc., New York, 1999.
    MathSciNet

  10. S. B. Nadler, Jr., Hyperspaces of sets. A text with research questions, Monographs and Textbooks in Pure and Applied Mathematics, vol. 49, Marcel Dekker, Inc., New York-Basel, 1978.
    MathSciNet

  11. E. H. Spanier, Algebraic Topology, McGraw-Hill Book Co., New York-Toronto-London, 1966.
    MathSciNet


Glasnik Matematicki Home Page