Glasnik Matematicki, Vol. 44, No.2 (2009), 423-446.
APPROXIMATION BY TRIGONOMETRIC POLYNOMIALS
IN WEIGHTED REARRANGEMENT INVARIANT SPACES
Ali Guven and Daniyal M. Israfilov
Department of Mathematics, Faculty of Art and Science, Balikesir University,
10145, Balikesir, Turkey
e-mail: ag_guven@yahoo.com
e-mail: mdaniyal@balikesir.edu.tr
Abstract. We investigate the approximation properties of trigonometric polynomials and
prove some direct and inverse theorems for polynomial approximation in
weighted rearrangement invariant spaces.
2000 Mathematics Subject Classification.
41A25, 42A10, 46E30.
Key words and phrases. Boyd indices, modulus
of smoothness, Muckenhoupt class,
weighted rearrangement invariant space.
Full text (PDF) (free access)
DOI: 10.3336/gm.44.2.10
References:
- S. Y. Alper,
Approximation in the mean of analytic
functions of class Ep, (Russian), Gos. Izdat. Fiz.-Mat. Lit.
Moscow (1960), 272-286.
- N. K. Bary,
A treatise on trigonometric series, Vol. I-II,
Pergamon Press, New York, 1964.
MathSciNet
- C. Bennett and R. Sharpley,
Interpolation of operators,
Academic Press, Inc., Boston, 1988.
MathSciNet
- M. C. de Bonis, G. Mastroianni and M. G. Russo,
Polynomial approximation with special doubling weights, Acta Sci. Math.
(Szeged) 69 (2003), 159-184.
MathSciNet
- D. W. Boyd,
Spaces between a pair of reflexive
Lebesgue spaces, Proc. Amer. Math. Soc. 18 (1967), 215-219.
MathSciNet
CrossRef
- A. Böttcher and Yuri I. Karlovich,
Carleson curves,
Muckenhoupt weights and Toeplitz operators, Birkhauser-Verlag, Basel, 1997.
MathSciNet
- A. Cavus and D. M. Israfilov,
Approximation by
Faber-Laurent rational functions in the mean of functions of the class
Lp (Γ) with 1 < p < ∞,
Approx. Theory Appl. (N.S.) 11 (1995), 105-118.
MathSciNet
- R. A. Devore and G. G. Lorentz,
Constructive Approximation,
Springer-Verlag, Berlin, 1993.
MathSciNet
- Z. Ditzian and V. Totik,
K-functionals and best
polynomial approximation in weighted Lp(R), J. Approx.
Theory 46 (1986), 38-41.
MathSciNet
CrossRef
- Z. Ditzian and V. Totik,
K-functionals and weighted
moduli of smoothness, J. Approx. Theory 63 (1990), 3-29.
MathSciNet
CrossRef
- Z. Ditzian and V. Totik,
Moduli of Smoothness, Springer Series in Computational Mathematics 9,
Springer-Verlag, New York, 1987.
MathSciNet
- P. L. Duren,
Theory of Hp Spaces, Academic Press, New York-London, 1970.
MathSciNet
- G. Freud and H. N. Mhaskar,
Weighted polynomial
approximation in rearrangement invariant Banach function spaces on the whole
real line, Indian J. Math. 22 (1980), 209-294.
MathSciNet
- G. Freud and H. N. Mhaskar,
K-functionals and moduli of
continuity in weighted polynomial approximation, Ark. Mat. 21
(1983), 145-161.
MathSciNet
CrossRef
- E. A. Haciyeva,
Investigation the Properties of
Functions with Quasimonotone Fourier Coefficients in Generalized
Nikolskii-Besov Spaces, (Russian), Authors Summary of Candidates
Dissertation, Tbilisi, 1986.
- R. Hunt, B. Muckenhoupt and R. Wheeden,
Weighted
norm inequalities for the conjugate function and Hilbert transform, Trans.
Amer. Math. Soc. 176 (1973), 227-251.
MathSciNet
CrossRef
- R. A. Hunt and W. Young,
A Weighted Norm Inequality
for Fourier Series, Bull. Amer. Math. Soc. 80 (1974), 274-277.
MathSciNet
CrossRef
- D. M. Israfilov,
Approximation by p-Faber
Polynomials in the Weighted Smirnov Class Ep}(G,ω)
and the Bieberbach Polynomials, Constr. Approx.
17 (2001), 335-351.
MathSciNet
CrossRef
- D. M. Israfilov,
Approximation by p-Faber-Laurent rational functions in the weighted Lebesgue spaces,
Czechoslovak Math. J.
54(129) (2004), 751-765.
MathSciNet
CrossRef
- D. M. Israfilov and A. Guven,
Approximation in weighted
Smirnov classes, East J. Approx. 11 (2005), 91-102.
MathSciNet
- A. Yu. Karlovich,
Singular integral
operators with PC coefficients in reflexive rearrangement invariant spaces,
Integral Equations Operator Theory 32 (1998), 436-481.
MathSciNet
CrossRef
- A. Yu. Karlovich,
On the essential norm of
the Cauchy singular operator in weighted rearrangement-invariant spaces,
Integral Equations Operator Theory 38 (2000), 28-50.
MathSciNet
CrossRef
- A. Yu. Karlovich,
Algebras of singular
integral operators with PC coefficients in rearrangement invariant spaces
with Muckenhoupt weights, J. Operator Theory 47 (2002), 303-323.
MathSciNet
- A. Yu. Karlovich,
Fredholmness of Singular
Integral Operators with Piecewise Continuous Coefficients on Weighted Banach
Function Spaces, J. Integral Equations Appl. 15 (2003), 263-320.
MathSciNet
CrossRef
- V. M. Kokilashvili,
A direct theorem on mean
approximation of analytic functions by polynomials, Soviet Math. Dokl. 10
(1969), 411-414.
- N. X. Ky,
On approximation by trigonometric polynomials
in Lup-spaces,
Studia Sci. Math. Hungar. 28 (1993), 183-188.
MathSciNet
- N. X. Ky,
Moduli of Mean Smoothness and Approximation
with Ap-weights,
Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 40 (1997), 37-48.
MathSciNet
- Chong Li,
On best approximations from RS-sets in
complex Banach spaces, Acta Math. Sin. (Engl. Ser.) 21 (2005), 31-38.
MathSciNet
CrossRef
- G. Mastroianni and V. Totik,
Jackson type inequalities
for doubling and Ap weights, in: Proc. of the Third
International Conference on Functional Analysis and Approximation Theory,
Vol. 1 (Acquafredda di Maratea, 1996), Rend. Circ. Mat. Palermo (2) Suppl.
52 (1998), 83-99.
MathSciNet
- G. Mastroianni and V. Totik,
Weighted polynomial
inequalities with doubling and A∞ weights, Constr.
Approx. 16 (2000), 37-71.
MathSciNet
CrossRef
- G. Mastroianni and V. Totik,
Best approximation and
moduli of smoothness for doubling weights, J. Approx. Theory 110 (2001),
180-199.
MathSciNet
CrossRef
- H. N. Mhaskar,
Introduction to the theory of weighted
polynomial approximation, Series in Approximation and Decompisitions 7,
World Scientific Publishing Co., Inc., River Edge, 1996.
MathSciNet
- B. Muckenhoupt,
Weighted norm inequalities for
the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
MathSciNet
CrossRef
- A. I. Stepanets,
Classification and approximation of periodic
functions, translated from the 1987 Russian original by P. V. Malyshev and D. V. Malyshev
and revised by the author. Mathematics and its Applications, 333. Kluwer Academic Publishers Group,
Dordrecht, 1995.
MathSciNet
- A. F. Timan,
Theory of approximaton of functions of a real
variable, translated from the Russian by J. Berry. English translation edited and editorial preface by J. Cossar.
International Series of Monographs in Pure and Applied Mathematics, Vol. 34 A Pergamon Press Book.
The Macmillan Co., New York 1963.
MathSciNet
Glasnik Matematicki Home Page