Glasnik Matematicki, Vol. 44, No.2 (2009), 423-446.

APPROXIMATION BY TRIGONOMETRIC POLYNOMIALS IN WEIGHTED REARRANGEMENT INVARIANT SPACES

Ali Guven and Daniyal M. Israfilov

Department of Mathematics, Faculty of Art and Science, Balikesir University, 10145, Balikesir, Turkey
e-mail: ag_guven@yahoo.com
e-mail: mdaniyal@balikesir.edu.tr


Abstract.   We investigate the approximation properties of trigonometric polynomials and prove some direct and inverse theorems for polynomial approximation in weighted rearrangement invariant spaces.

2000 Mathematics Subject Classification.   41A25, 42A10, 46E30.

Key words and phrases.   Boyd indices, modulus of smoothness, Muckenhoupt class, weighted rearrangement invariant space.


Full text (PDF) (free access)

DOI: 10.3336/gm.44.2.10


References:

  1. S. Y. Alper, Approximation in the mean of analytic functions of class Ep, (Russian), Gos. Izdat. Fiz.-Mat. Lit. Moscow (1960), 272-286.

  2. N. K. Bary, A treatise on trigonometric series, Vol. I-II, Pergamon Press, New York, 1964.
    MathSciNet

  3. C. Bennett and R. Sharpley, Interpolation of operators, Academic Press, Inc., Boston, 1988.
    MathSciNet

  4. M. C. de Bonis, G. Mastroianni and M. G. Russo, Polynomial approximation with special doubling weights, Acta Sci. Math. (Szeged) 69 (2003), 159-184.
    MathSciNet

  5. D. W. Boyd, Spaces between a pair of reflexive Lebesgue spaces, Proc. Amer. Math. Soc. 18 (1967), 215-219.
    MathSciNet     CrossRef

  6. A. Böttcher and Yuri I. Karlovich, Carleson curves, Muckenhoupt weights and Toeplitz operators, Birkhauser-Verlag, Basel, 1997.
    MathSciNet

  7. A. Cavus and D. M. Israfilov, Approximation by Faber-Laurent rational functions in the mean of functions of the class Lp (Γ) with 1 < p < ∞, Approx. Theory Appl. (N.S.) 11 (1995), 105-118.
    MathSciNet

  8. R. A. Devore and G. G. Lorentz, Constructive Approximation, Springer-Verlag, Berlin, 1993.
    MathSciNet

  9. Z. Ditzian and V. Totik, K-functionals and best polynomial approximation in weighted Lp(R), J. Approx. Theory 46 (1986), 38-41.
    MathSciNet     CrossRef

  10. Z. Ditzian and V. Totik, K-functionals and weighted moduli of smoothness, J. Approx. Theory 63 (1990), 3-29.
    MathSciNet     CrossRef

  11. Z. Ditzian and V. Totik, Moduli of Smoothness, Springer Series in Computational Mathematics 9, Springer-Verlag, New York, 1987.
    MathSciNet

  12. P. L. Duren, Theory of Hp Spaces, Academic Press, New York-London, 1970.
    MathSciNet

  13. G. Freud and H. N. Mhaskar, Weighted polynomial approximation in rearrangement invariant Banach function spaces on the whole real line, Indian J. Math. 22 (1980), 209-294.
    MathSciNet

  14. G. Freud and H. N. Mhaskar, K-functionals and moduli of continuity in weighted polynomial approximation, Ark. Mat. 21 (1983), 145-161.
    MathSciNet     CrossRef

  15. E. A. Haciyeva, Investigation the Properties of Functions with Quasimonotone Fourier Coefficients in Generalized Nikolskii-Besov Spaces, (Russian), Authors Summary of Candidates Dissertation, Tbilisi, 1986.

  16. R. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-251.
    MathSciNet     CrossRef

  17. R. A. Hunt and W. Young, A Weighted Norm Inequality for Fourier Series, Bull. Amer. Math. Soc. 80 (1974), 274-277.
    MathSciNet     CrossRef

  18. D. M. Israfilov, Approximation by p-Faber Polynomials in the Weighted Smirnov Class Ep}(G,ω) and the Bieberbach Polynomials, Constr. Approx. 17 (2001), 335-351.
    MathSciNet     CrossRef

  19. D. M. Israfilov, Approximation by p-Faber-Laurent rational functions in the weighted Lebesgue spaces, Czechoslovak Math. J. 54(129) (2004), 751-765.
    MathSciNet     CrossRef

  20. D. M. Israfilov and A. Guven, Approximation in weighted Smirnov classes, East J. Approx. 11 (2005), 91-102.
    MathSciNet

  21. A. Yu. Karlovich, Singular integral operators with PC coefficients in reflexive rearrangement invariant spaces, Integral Equations Operator Theory 32 (1998), 436-481.
    MathSciNet     CrossRef

  22. A. Yu. Karlovich, On the essential norm of the Cauchy singular operator in weighted rearrangement-invariant spaces, Integral Equations Operator Theory 38 (2000), 28-50.
    MathSciNet     CrossRef

  23. A. Yu. Karlovich, Algebras of singular integral operators with PC coefficients in rearrangement invariant spaces with Muckenhoupt weights, J. Operator Theory 47 (2002), 303-323.
    MathSciNet

  24. A. Yu. Karlovich, Fredholmness of Singular Integral Operators with Piecewise Continuous Coefficients on Weighted Banach Function Spaces, J. Integral Equations Appl. 15 (2003), 263-320.
    MathSciNet     CrossRef

  25. V. M. Kokilashvili, A direct theorem on mean approximation of analytic functions by polynomials, Soviet Math. Dokl. 10 (1969), 411-414.

  26. N. X. Ky, On approximation by trigonometric polynomials in Lup-spaces, Studia Sci. Math. Hungar. 28 (1993), 183-188.
    MathSciNet

  27. N. X. Ky, Moduli of Mean Smoothness and Approximation with Ap-weights, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 40 (1997), 37-48.
    MathSciNet

  28. Chong Li, On best approximations from RS-sets in complex Banach spaces, Acta Math. Sin. (Engl. Ser.) 21 (2005), 31-38.
    MathSciNet     CrossRef

  29. G. Mastroianni and V. Totik, Jackson type inequalities for doubling and Ap weights, in: Proc. of the Third International Conference on Functional Analysis and Approximation Theory, Vol. 1 (Acquafredda di Maratea, 1996), Rend. Circ. Mat. Palermo (2) Suppl. 52 (1998), 83-99.
    MathSciNet

  30. G. Mastroianni and V. Totik, Weighted polynomial inequalities with doubling and A weights, Constr. Approx. 16 (2000), 37-71.
    MathSciNet     CrossRef

  31. G. Mastroianni and V. Totik, Best approximation and moduli of smoothness for doubling weights, J. Approx. Theory 110 (2001), 180-199.
    MathSciNet     CrossRef

  32. H. N. Mhaskar, Introduction to the theory of weighted polynomial approximation, Series in Approximation and Decompisitions 7, World Scientific Publishing Co., Inc., River Edge, 1996.
    MathSciNet

  33. B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
    MathSciNet     CrossRef

  34. A. I. Stepanets, Classification and approximation of periodic functions, translated from the 1987 Russian original by P. V. Malyshev and D. V. Malyshev and revised by the author. Mathematics and its Applications, 333. Kluwer Academic Publishers Group, Dordrecht, 1995.
    MathSciNet

  35. A. F. Timan, Theory of approximaton of functions of a real variable, translated from the Russian by J. Berry. English translation edited and editorial preface by J. Cossar. International Series of Monographs in Pure and Applied Mathematics, Vol. 34 A Pergamon Press Book. The Macmillan Co., New York 1963.
    MathSciNet


Glasnik Matematicki Home Page