Glasnik Matematicki, Vol. 44, No.2 (2009), 401-421.

A RESULT IN ASYMPTOTIC ANALYSIS FOR THE FUNCTIONAL OF GINZBURG-LANDAU TYPE WITH EXTERNALLY IMPOSED MULTIPLE SMALL SCALES IN ONE DIMENSION

Andrija Raguž

Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: andrija@math.hr


Abstract.   In this paper we present technical improvement of results in our previous paper. We study asymptotic behavior of the functional

{\cal J}^{\vep}_{a,\beta,\gamma}(v)=\avv{0}{1}\Big({\vep}^2
v''^2(s)+W(v'(s))+a(\vep^{-\beta}s,\vep^{-\gamma}s)v^2(s)\Big)ds

as ε → 0, where a is 1 × 1-periodic. We determine (rescaled) minimal asymptotic energy associated to Jεa,β,γ as ε → 0 where β, γ ≥ 0, β + γ > 0.

2000 Mathematics Subject Classification.   34E15, 49J45.

Key words and phrases.   Minimization, multiple small scales, Ginzburg-Landau functional, Gamma convergence.


Full text (PDF) (free access)

DOI: 10.3336/gm.44.2.09


References:

  1. G. Alberti and S. Müller, A new approach to variational problems with multiple scales, Comm. Pure Appl. Math. 54 (2001), 761-825.
    MathSciNet     CrossRef

  2. R. Choksi, Scaling laws in microphase separation of diblock copolymers, J. Nonlinear Sci. 11 (2001), 223-236.
    MathSciNet     CrossRef

  3. G. DalMaso, An Introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications, 8. Birkhäuser Boston, Inc., Boston, 1993.
    MathSciNet

  4. N. Dirr, M. Lucia and M. Novaga, Γ-convergence of the Allen-Cahn energy with an oscillation forcing term, Interfaces Free Bound. 8 (2006), 47-78.
    MathSciNet

  5. L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, CRC Press, Boca Raton, 1992.
    MathSciNet

  6. I. Fonseca, Phase transitions of elastic solid materials, Arch. Rational Mech. Anal. 107 (1989), 195-223.
    MathSciNet     CrossRef

  7. I. Fonseca and L. Tartar, The gradient theory of phase transitions for systems with two potential wells, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), 89-102.
    MathSciNet

  8. A. Khachaturyan, Theory of structural transformations in solids, New York, John Wiley and Sons 1983.

  9. A. Khachaturyan, Some questions concerning the theory of phase transformations in solids, Sov. Phys. - Solid State 8 (1967), 2163-2168.

  10. A. Khachaturyan and G. Shatalov, Theory of macroscopic periodicity for a phase transition in a solid state, Sov. Phys. JETP 29 (1969), 557-561.

  11. R. V. Kohn and S. Müller, Branching of twins near an austensite-twinned-martensite interface, Philosophical Magazine A 66 (1992), 697-715.
    CrossRef

  12. R. V. Kohn and S. Müller, Surface energy and microstructure in coherent phase transitions, Comm. Pure Appl. Math. 47 (1994), 405-435.
    MathSciNet     MathSciNet

  13. S. Müller, Singular perturbations as a selection criterion for minimizing sequences, Calc. Var. Partial Differential Equations 1 (1993), 169-204.
    MathSciNet     CrossRef

  14. T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts, Macromolecules 19 (1986), 2621-2632.
    CrossRef

  15. A. Raguz, On some questions related to relaxation and minimization for a class of functionals of Ginzburg-Landau type in one dimension, PhD Thesis, University of Zagreb 2004, http://web.math.hr/~andrija/doktorat5.pdf (in Croatian).

  16. A. Raguz, Relaxation of Ginzburg-Landau functional with 1-Lipschitz penalizing term in one dimension by Young measures on micro-patterns, Asymptotic Anal. 41 (2005), 331-361.
    MathSciNet

  17. A. Raguz, Computation of Ginzburg-Landau energy with nonlinear term, submitted.

  18. A. Raguz, A note on calculation of asymptotic energy for a functional of Ginzburg-Landau type with externally imposed lower-order oscillatory term in one dimension, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 10 (2007), 1125-1142.
    MathSciNet

  19. C. I. Zeppieri, Multi-scale analysis via Γ-convergence, PhD Thesis, Universitá degli Studi di Roma "La Sapienza", 2006, http://cvgmt.sns.it/papers/zep06/.


Glasnik Matematicki Home Page