Glasnik Matematicki, Vol. 44, No.2 (2009), 349-399.
INTERTWINING OPERATORS AND COMPOSITION
SERIES OF GENERALIZED AND DEGENERATE
PRINCIPAL SERIES FOR Sp(4,R)
Goran Muić
Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: gmuic@math.hr
Abstract. In this paper we study analytic properties of
intertwining operators and apply them to the determination of the composition
series of degenerate and generalized principal series for Sp(4,R).
We expect that that some of the methods developed here
will extend to higher rank groups in order to extend the formalism of
degenerate Eisenstein series given in our previous papers.
In higher rank cases we expect to be more dependent on the
algebraic theory of representation theory of the
real reductive groups as developed by Vogan.
2000 Mathematics Subject Classification.
22E50.
Key words and phrases. Intertwining operators, composition series, generalized principal series.
Full text (PDF) (free access)
DOI: 10.3336/gm.44.2.08
References:
- A. M. Aubert,
Dualité dans le groupe de Grothendieck de la catégorie des
représentations lisses de longueur finie d'un groupe réductif p-adique,
Trans. Amer. Math. Soc. 347 (1995), 2179-2189 (and Erratum,
Trans. Amer. Math. Soc 348 (1996), 4687-4690.)
MathSciNet
CrossRef
- J. Arthur,
Intertwining operators and residues. I. Weighted characters,
J. Funct. Anal. 84 (1989), 19-84.
MathSciNet
CrossRef
- N. Bourbaki,
Groupe et Algébres de Lie, Chap. 6, Masson, Paris, 1981.
MathSciNet
- D. Goldberg,
Reducibility of induced representations for Sp(2n) and
SO(n), Amer. J. Math. 116 (1994), 1101-1151.
MathSciNet
CrossRef
- R. Herb,
Elliptic representations for Sp(2n) and SO(n),
Pacific J. Math. 161 (1993), 347-358.
MathSciNet
- C. Jantzen, H. Kim,
Parametrization of the image of normalized intertwining operators,
Pacific J. Math. 199 (2001), 367-415.
MathSciNet
- H. Kim,
The residual spectrum of Sp4, Compositio Math.
99 (1995), 129-151.
MathSciNet
- H. Kim,
The residual spectrum of G2, Canad. J. Math. 48 (1996), 1245-1272.
MathSciNet
- H. Kim,
Residual spectrum of odd orthogonal groups, Internat. Math. Res. Notices 17 (2001),
873-906.
MathSciNet
CrossRef
- A. W. Knapp,
Representation theory of semisimple groups. An overview based on examples,
Princeton Mathematical Series 36, Princeton University Press, Princeton, NJ, 1986.
MathSciNet
- A. W. Knapp, D. Vogan,
Cohomological induction and unitary representations,
Princeton Mathematical Series 45, Princeton University Press, Princeton, NJ, 1995.
MathSciNet
- D. Milicic,
Algebraic D-modules and representation theory of semisimple
Lie groups, Contemp. Math. 154, Amer. Math. Soc., Providence, RI, 1993, 133-168.
MathSciNet
- C. Moeglin,
Orbites unipotentes et spectre discret non ramifie: le cas des groupes classiques dèployès,
Compositio Math. 77 (1991), 1-54.
MathSciNet
- C. Moeglin,
Reprèsentations unipotentes et formes automorphes de carrè intègrable,
Forum Math. 6 (1994), 651-744.
MathSciNet
- C. Moeglin, J. L. Waldspurger,
Le spectre résiduel de GL(n), Ann. Sci. École Norm. Sup. (4)
22 (1989), 605-674.
MathSciNet
- C. Moeglin, J. L. Waldspurger,
Spectral decomposition and Eisenstein series, Cambridge Tracts in Mathematics 113,
Cambridge University Press, Cambridge, 1995.
MathSciNet
- G. Muic,
The unitary dual of p-adic G2, Duke Math. J. 90 (1997), 465-493.
MathSciNet
CrossRef
- G. Muic,
Reducibility of generalized principal series,
Canad. J. Math. 57 (2005), 616-647.
MathSciNet
- G. Muic,
Composition series of generalized principal series; the case of strongly positive discrete series,
Israel J. Math 140 (2004), 157-202.
MathSciNet
CrossRef
- G. Muic,
Reducibility of standard representations, Pacific J. Math. 222 (2005), 133-168.
MathSciNet
CrossRef
- G. Muic,
On certain classes of unitary representations for split classical groups, Canad. J. Math.
59 (2007), 148-185.
MathSciNet
- G. Muic,
Some applications of degenerate Eisenstein series on Sp2n,
J. Ramanujan Math. Soc. 23, No.3 (2008) 222-257.
MathSciNet
- G. Muic, M.Tadic,
Unramified Unitary Duals for Split Classical p-adic Groups;
The topology and Isolated Representations, Shahidi's volume (to appear).
- P. J. Sally, M. Tadic,
Induced representations and classifications for G Sp(2,F) and Sp(2,F),
Mém. Soc. Math. France (N.S.) 52 (1993), 75-133.
MathSciNet
- F. Shahidi,
Local coefficients as Artin factors for real groups, Duke Math. J. 52 (1985),
973-1007.
MathSciNet
CrossRef
- B. Speh,
Unitary representations of GL(n,R) with nontrivial (g,K)-cohomology,
Invent. Math. 71 (1983), 443-465.
MathSciNet
CrossRef
- B. Speh, D. A. Vogan,
Reducibility of generalized principal series representations,
Acta. Math. 145 (1980), 227-299.
MathSciNet
CrossRef
- M. Tadic,
On reducibility of parabolic induction,
Israel J. Math. 107 (1998), 29-91.
MathSciNet
CrossRef
- D. A. Vogan,
Gelfand-Kirillov dimension for Harish-Chandra modules,
Invent. Math. 48 (1978), 75-98.
MathSciNet
CrossRef
- D. A. Vogan,
Representations of real reductive Lie groups, Progress in Mathematics
15, Birkhäuser, Boston, 1981.
MathSciNet
- D. A. Vogan,
The unitary dual of G2,
Invent. Math. 116 (1994), 677-791.
MathSciNet
CrossRef
- T. Watanabe,
Residual spectrum representations of Sp4,
Nagoya Math J. 127 (1992), 15-47.
MathSciNet
- G. Zuckerman,
Tensor products of finite and infinite dimensional
representations of semisimple Lie groups, Ann. Math. (2)
106 (1977), 295-308.
MathSciNet
CrossRef
- A. V. Zelevinsky,
Induced representations of reductive p-adic groups. On irreducible representations of $
GL(n),
Ann. Sci. École Norm. Sup. (4) 13 (1980), 165-210.
MathSciNet
Glasnik Matematicki Home Page