Glasnik Matematicki, Vol. 44, No.2 (2009), 343-348.

ON AUTOMORPHISMS OF ORDER p OF METACYCLIC p-GROUPS WITHOUT CYCLIC SUBGROUPS OF INDEX p

Yakov Berkovich

Department of Mathematics, University of Haifa, Mount Carmel, Haifa 31905, Israel
e-mail: berkov@math.haifa.ac.il


Abstract.   Let L be a metacyclic p-group, p > 2, without cyclic subgroups of index p and let a in Aut(L) be of order p. We show that either a centralizes Ω1(L) or p = 3 and the natural semidirect product < a > · L is of maximal class so the subgroup L has very specific structure. This improves a result by Meierfrankenfeld and Stellmacher.

2000 Mathematics Subject Classification.   20D15.

Key words and phrases.   Metacyclic, minimal nonmetacyclic and minimal nonabelian p-groups, p-groups of maximal class.


Full text (PDF) (free access)

DOI: 10.3336/gm.44.2.07


References:

  1. M. Aschbacher and S. D. Smith, The classification of quasithin groups. I. Structure of strongly quasithin K-groups, Mathematical Surveys and Monographs 111. American Mathematical Society, Providence, RI, 2004.
    MathSciNet

  2. Y. Berkovich, On subgroups of finite p-groups, J. Algebra 224 (2000), 198-240.
    MathSciNet     CrossRef

  3. Y. Berkovich, Groups of prime power order. Vol. 1. With a foreword by Zvonimir Janko, de Gruyter Expositions in Mathematics 46, Walter de Gruyter GmbH & Co. KG, Berlin, 2008.
    MathSciNet

  4. Y. Berkovich, On subgroups and epimorphic images of finite p-groups, J. Algebra 248 (2002), 472-553.
    MathSciNet     CrossRef

  5. Y. Berkovich, On abelian subgroups of p-groups, J. Algebra 199 (1998), 262-280.
    MathSciNet     CrossRef

  6. Y. Berkovich, Short proofs of some basic characterization theorems of finite p-group theory, Glas. Mat. Ser. III 41(61) (2006), 239-258.
    MathSciNet     CrossRef

  7. Y. Berkovich and Z. Janko, Structure of finite p-groups with given subgroups, Contemp. Math. 402 (2006), 13-93.
    MathSciNet

  8. B. Huppert, Endliche Gruppen. I, Springer-Verlag, Berlin-New York, 1967.
    MathSciNet

  9. I. Isaacs, Algebra. A graduate course, Brooks/Cole Publishing Co., Pacific Grove, CA, 1994.
    MathSciNet

  10. Z. Janko, Finite 2-groups with exactly four cyclic subgroups of order 2n, J. Reine Angew. Math. 566 (2004), 135-181.
    MathSciNet     CrossRef

  11. U. Meierfrankenfeld and B. Stellmacher, The generic groups of p-type, preprint, Michigan State University, 1997.

  12. L. Redei, Das "schiefe Produkt" in der Gruppentheorie mit Anwendung auf die endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungzahlen, zu denen nur kommutative Gruppen gehören, Comment. Math. Helv. 20 (1947), 225-264.
    MathSciNet     CrossRef


Glasnik Matematicki Home Page