Glasnik Matematicki, Vol. 44, No.2 (2009), 323-331.

ON THE APPROXIMATION TO ALGEBRAIC NUMBERS BY ALGEBRAIC NUMBERS

Yann Bugeaud

Université de Strasbourg, U. F. R. de mathématiques, 7, rue René Descartes, 67084 Strasbourg Cedex, France
e-mail: bugeaud@math.u-strasbg.fr


Abstract.   Let n be a positive integer. Let ξ be an algebraic real number of degree greater than n. It follows from a deep result of W. M. Schmidt that, for every positive real number ε, there are infinitely many algebraic numbers α of degree at most n such that |ξ - α| < H(α)-n - 1 + ε, where H(α) denotes the naive height of α. We sharpen this result by replacing ε by a function H --> ε(H) that tends to zero when H tends to infinity. We make a similar improvement for the approximation to algebraic numbers by algebraic integers, as well as for an inhomogeneous approximation problem.

2000 Mathematics Subject Classification.   11J68.

Key words and phrases.   Approximation by algebraic numbers, Schmidt Subspace Theorem.


Full text (PDF) (free access)

DOI: 10.3336/gm.44.2.05


References:

  1. Y. Bugeaud, Approximation by algebraic integers and Hausdorff dimension, J. London Math. Soc. (2) 65 (2002), 547-559.
    MathSciNet     CrossRef

  2. Y. Bugeaud, Approximation by algebraic numbers, Cambridge Tracts in Mathematics 160, Cambridge University Press, Cambridge, 2004.
    MathSciNet

  3. Y. Bugeaud, Extensions of the Cugiani-Mahler Theorem, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), 477-498.
    MathSciNet

  4. Y. Bugeaud and M. Laurent, Exponents of homogeneous and inhomogeneous Diophantine Approximation, Mosc. Math. J. 5 (2005), 747-766.
    MathSciNet

  5. Y. Bugeaud et O. Teulié, Approximation d'un nombre réel par des nombres algébriques de degré donné, Acta Arith. 93 (2000), 77-86.
    MathSciNet

  6. J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45, Cambridge University Press, New York, 1957.
    MathSciNet

  7. M. Cugiani, Sull'approssimazione di numeri algebrici mediante razionali, Collectanea Mathematica, Pubblicazioni dell'Istituto di matematica dell'Universitá di Milano 169, Ed. C. Tanburini, Milano, pagg. 5 (1958).

  8. H. Davenport and W. M. Schmidt, Approximation to real numbers by quadratic irrationals, Acta Arith. 13 (1967/1968), 169-176.
    MathSciNet

  9. H. Davenport and W. M. Schmidt, Approximation to real numbers by algebraic integers, Acta Arith. 15 (1968/1969), 393-416.
    MathSciNet

  10. J.-H. Evertse and H.P. Schlickewei, A quantitative version of the absolute subspace theorem, J. Reine Angew. Math. 548 (2002), 21-127.
    MathSciNet     CrossRef

  11. D. Kleinbock and B. Weiss, Dirichlet's theorem on Diophantine approximation and homogeneous flows, J. Mod. Dyn. 2 (2008), 43-62.
    MathSciNet

  12. K. Mahler, Lectures on Diophantine approximation, Part 1: g-adic numbers and Roth's theorem, University of Notre Dame Press, Notre Dame, Ind 1961.
    MathSciNet

  13. K. Mahler, On the approximation of algebraic numbers by algebraic integers, J. Austral. Math. Soc. 3 (1963), 408-434.
    MathSciNet     CrossRef

  14. K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1-20; corrigendum, 168.
    MathSciNet

  15. W. M. Schmidt, Simultaneous approximations to algebraic numbers by rationals, Acta Math. 125 (1970), 189-201.
    MathSciNet     CrossRef

  16. W. M. Schmidt, Approximation to algebraic numbers, Enseignement Math. (2) 17 (1971), 187-253.
    MathSciNet

  17. W. M. Schmidt, Diophantine approximation, Lecture Notes in Math. 785, Springer, Berlin, 1980.
    MathSciNet

  18. W. M. Schmidt, The subspace theorem in Diophantine approximation, Compositio Math. 69 (1989), 121-173.
    MathSciNet

  19. O. Teulié, Approximation d'un nombre r\'eel par des unités algébriques, Monatsh. Math. 132 (2001), 169-176.
    MathSciNet     CrossRef

  20. E. Wirsing, Approximation mit algebraischen Zahlen beschränkten Grades, J. Reine Angew. Math. 206 (1961), 67-77.
    MathSciNet


Glasnik Matematicki Home Page